Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sampling
2.2. Analysis of IgG Responses to SARS-CoV-2 S1, S2 and N Proteins
2.3. Statistical Analysis
3. Results
3.1. Clinical-Demographic Characteristics
3.2. Anti-N, -S1 and -S2 Protein IgG Antibody Responses
3.3. The IgG Antibody Response According to the Clinical Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Health Commission of the People’s Republic of China. Update on the Novel Coronavirus Pneumonia Outbreak. 2020. Available online: http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml (accessed on 27 March 2020).
- World Health Organization. Coronavirus Disease (COVID-2019) Situation Reports. 2020. Available online: https://www.who.int/emergencies/diseases/novel--coronavirus2019/situation--reports/ (accessed on 27 March 2020).
- Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Hosts and Sources of Endemic Human Coronaviruses. Adv. Virus Res. 2018, 100, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, M.; Pandey, N.; Shukla, A.; Singh, S.K. SARS coronavirus 2: From genome to infectome. Respir. Res. 2020, 21, 318. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Y.; Zhao, R.; Gao, L.J.; Gao, X.F.; Wang, D.P.; Cao, J.M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell. Infect. Microbiol. 2020, 10, 587269. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Lan, J.; Yao, Y.; Deng, Y.; Chen, H.; Lu, G.; Wang, W.; Bao, L.; Deng, W.; Wei, Q.; Gao, G.F.; et al. Recombinant Receptor Binding Domain Protein Induces Partial Protective Immunity in Rhesus Macaques Against Middle East Respiratory Syndrome Coronavirus Challenge. eBioMedicine 2015, 2, 1438–1446. [Google Scholar] [CrossRef] [Green Version]
- Cong, Y.; Ulasli, M.; Schepers, H.; Mauthe, M.; V’Kovski, P.; Kriegenburg, F.; Thiel, V.; de Haan, C.A.M.; Reggiori, F. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J. Virol. 2020, 94, e01925-19. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.T.; Tam, F.C.; Ma, C.H.; Chan, P.K.; Cheung, J.L.; Niu, H.; Tam, J.S.; Lim, P.L. Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J. Infect. Dis. 2004, 190, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther. 2020, 5, 237. [Google Scholar] [CrossRef]
- Li, D.; Li, J. Immunologic Testing for SARS-CoV-2 Infection from the Antigen Perspective. J. Clin. Microbiol. 2021, 59, e02160-20. [Google Scholar] [CrossRef]
- Xavier, A.R.; Silva, J.S.; Almeida, J.P.; Conceição, J.F.; Lacerda, J.S.; Kannan, S. COVID-19: Clinical and laboratory manifestations in novel coronavirus infection. J. Bras. Patol. Med. Lab. 2020, 56, e3232020. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Q&A: Similarities and Differences—COVID-19 and Influenza. 2020. Available online: https://www.who.int/news-room/q-a-detail/q-asimilarities-and-differences-COVID-19-and-influenza (accessed on 27 March 2020).
- Proal, A.D.; VanElzakker, M.B. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front. Microbiol. 2021, 12, 698169. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Cameron, A.; Zhou, Q.; Wiltse, A.; Nayak, J.; Pecora, N.D.; Zand, M.S. IgG Against Human Betacoronavirus Spike Proteins Correlates With SARS-CoV-2 Anti-Spike IgG Responses and COVID-19 Disease Severity. J. Infect. Dis. 2022, 226, 474–484. [Google Scholar] [CrossRef]
- Queiroz, M.A.F.; Neves, P.F.M.D.; Lima, S.S.; Lopes, J.D.C.; Torres, M.K.D.S.; Vallinoto, I.M.V.C.; Bichara, C.D.A.; Dos Santos, E.F.; de Brito, M.T.F.M.; da Silva, A.L.S.; et al. Cytokine Profiles Associated with Acute COVID-19 and Long COVID-19 Syndrome. Front. Cell. Infect. Microbiol. 2022, 12, 922422. [Google Scholar] [CrossRef]
- Martınez-Flores, D.; Zepeda-Cervantes, J.; Cruz-Rese’ndiz, A.; Aguirre-Sampieri, S.; Sampieri, A.; Vaca, L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front. Immunol. 2021, 12, 701501. [Google Scholar] [CrossRef]
- Sheikhshahrokh, A.; Ranjbar, R.; Saeidi, E.; Safarpoor Dehkordi, F.; Heiat, M.; Ghasemi-Dehkordi, P.; Goodarzi, H. Frontier Therapeutics and Vaccine Strategies for SARS-CoV-2 (COVID-19): A Review. Iran. J. Public Health 2020, 49, 18–29. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Clinical Management of COVID 19: Interim Guidance, 27 May 2020. Available online: https://apps.who.int/iris/handle/10665/332196 (accessed on 23 February 2023).
- Shrock, E.; Fujimura, E.; Kula, T.; Timms, R.T.; Lee, I.H.; Leng, Y.; Robinson, M.L.; Sie, B.M.; Li, M.Z.; Chen, Y.; et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 2020, 370, eabd4250. [Google Scholar] [CrossRef]
- Lauxmann, M.A.; Santucci, N.E.; Autran-Gomez, A.M. The SARS-CoV-2 Coronavirus and the COVID-19 Outbreak. Acad. Bras. Ciênc. 2020, 92, e20200709. [Google Scholar] [CrossRef] [PubMed]
- Röltgen, K.; Boyd, S.D. Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell. Host Microbe 2020, 29, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Smits, V.A.J.; Hernández-Carralero, E.; Paz-Cabrer, M.C.; Cabrera, E. The Nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochem. Biophys. Res. Commun. 2021, 543, 45–49. [Google Scholar] [CrossRef]
- Ng, K.T.; Mohd-Ismail, N.K.; Tan, Y.J. Spike S2 Subunit: The Dark Horse in the Race for Prophylactic and Therapeutic Interventions against SARS-CoV-2. Vaccines 2021, 9, 178. [Google Scholar] [CrossRef]
- Mariën, J.; Ceulemans, A.; Michiels, J.; Heyndrickx, L. Evaluating SARS-CoV-2 spike and nucleocapsid proteins as targets for antibody detection in severe and mild COVID-19 cases using a Luminex bead-based assay. J. Virol. Methods 2021, 288, 114025. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Chen, Z.; Zheng, P.; Li, L.; Zhuo, J.; Li, F.; Li, S.; Chen, D.; Wen, C.; Cai, W.; et al. Detection of Anti-SARS-CoV-2-S2 IgG Is More Sensitive Than Anti-RBD IgG in Identifying Asymptomatic COVID-19 Patients. Front. Immunol. 2021, 12, 724763. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.S.; Jones, F.K.; Nodoushani, A.; Kelly, M. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci. Immunol. 2020, 5, eabe0367. [Google Scholar] [CrossRef] [PubMed]
- Bichara, C.D.A.; da Silva, G.A.E.; Vaz, G.L.; da Silva, T.M.K.; Queiroz, M.A.F.; do Amaral, I.P.C.; Vallinoto, I.M.V.C.; Bichara, C.N.C.; Vallinoto, A.C.R. Dynamics of anti-SARS-CoV-2 IgG antibodies post-COVID-19 in a Brazilian Amazon population. BMC Infect. Dis. 2021, 21, 443. [Google Scholar] [CrossRef]
- Legros, V.; Denolly, S.; Vogrig, M.; Boson, B. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell. Mol. Immunol. 2021, 18, 318–327. [Google Scholar] [CrossRef]
- Karthik, K.; Senthilkumar, T.M.A.; Udhayavel, S.; Raj, G.D. Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19. Hum. Vaccines Immunother. 2020, 16, 3055–3060. [Google Scholar] [CrossRef]
- Liu, Y.; Soh, W.T.; Kishikawa, J.I.; Hirose, M.; Nakayama, E.E.; Li, S.; Sasai, M.; Suzuki, T.; Tada, A.; Arakawa, A.; et al. An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell 2021, 184, 3452–3466.e18. [Google Scholar] [CrossRef]
- Lau, E.H.Y.; Tsang, O.T.Y.; Hui, D.S.C.; Kwan, M.Y.W. Neutralizing antibody titres in SARS-CoV-2 infections. Nat. Commun. 2021, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef]
- Jogue, J.K.; Franko, N.M.; McCulloch, D.J.; McDonald, D.; Magedson, A.; Wolf, C.R.; Chu, H.Y. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw. Open 2021, 4, e210830. [Google Scholar] [CrossRef]
- Del Rio, C.; Collins, L.F.; Malani, P. Long-term Health Consequences of COVID-19. JAMA 2020, 324, 1723–1724. [Google Scholar] [CrossRef] [PubMed]
- García-Abellán, J.; Padilla, S.; Fernández-González, M.; García, J.A.; Agulló, V.; Andreo, M.; Ruiz, S.; Galiana, A.; Gutiérrez, F.; Masiá, M. Antibody Response to SARS-CoV-2 is Associated with Long-term Clinical Outcome in Patients with COVID-19: A Longitudinal Study. J. Clin. Immunol. 2021, 41, 1490–1501. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.C.; Ramonell, R.P.; Haddad, N.S.; Anam, F.A.; Rudolph, M.E.; Walker, T.A.; Truong, A.D.; Dixit, A.N.; Han, J.E.; Cabrera-Mora, M.; et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature 2022, 611, 139–147. [Google Scholar] [CrossRef]
- Sumi, T.; Harada, K. Immune response to SARS-CoV-2 in severe disease and long COVID-19. iScience 2022, 25, 104723. [Google Scholar] [CrossRef] [PubMed]
Variables | Asymptomatic n = 37 (%) | Mild n = 33 (%) | Moderate n = 33 (%) | Severe n = 33 (%) | p Values |
---|---|---|---|---|---|
Sex | |||||
Female | 26 (70.3) | 15 (45.5) | 15 (45.5) | 17 (51.5) | 0.1139 |
Male | 11 (29.7) | 18 (54.5) | 18 (54.5) | 16 (48.5) | |
Age | |||||
Median | 48.4 | 38.0 | 47.0 | 45.0 | 0.9165 |
Average | 50.0 | 38.2 | 47.4 | 46.8 | |
SD | 19.4 | 8.92 | 13.83 | 11.65 | |
Symptoms | |||||
Fever | - | 24 (72.72) | 25 (75.75) | 28 (84.84) | 0.4678 |
Cough | - | 14 (42.42) | 24 (72.72) | 26 (78.78) | 0.0042 |
Runny nose | - | 17 (51.51) | 9 (27.27) | 15 (45.45) | 0.1148 |
Headache | - | 18 (54.54) | 22 (66.66) | 24 (72.72) | 0.2901 |
Sore throat | - | 12 (36.36) | 16 (48.48) | 20 (60.60) | 0.1435 |
Chest pain | - | 11 (33.33) | 14 (42.42) | 24 (72.72) | 0.0036 |
Abdominal pain | - | 3 (9.09) | 13 (39.39) | 12 (36.36) | 0.0108 |
Body ache | - | 21 (63.63) | 25 (75.75) | 22 (66.66) | 0.5431 |
Nausea | - | 7 (21.21) | 9 (27.27) | 11 (33.33) | 0.5427 |
Vomiting | - | 2 (6.06) | 7 (21.21) | 5 (15.15) | 0.1956 |
Diarrhea | - | 11 (33.33) | 19 (57.57) | 16 (48.48) | 0.1367 |
Shortness of breath | - | 10 (30.30) | 19 (57.57) | 30 (90.90) | <0.0001 |
Weakness | - | 17 (51.51) | 13 (39.39) | 10 (30.30) | 0.1180 |
Tiredness | - | 15 (45.45) | 22 (66.66) | 17 (51.51) | 0.2042 |
Anosmia | - | 22 (66.66) | 19 (57.57) | 19 (57.57) | 0.6833 |
Ageusia | - | 21 (63.63) | 20 (60.60) | 20 (60.60) | 0.9582 |
Hospitalization | |||||
Yes | - | 0 (0.0) | 28 (84.85) | 33 (100) | <0.0001 |
No | - | 33 (100) | 5 (15.15) | 0 (0.0) | |
ICU admission | |||||
Yes | - | 0 (0.0) | 3 (9.09) | 9 (27.27) | 0.0011 |
No | - | 33 (100) | 30 (90.90) | 24 (72.72) | |
Ventilation support | |||||
Yes | - | 0 (0.0) | 1 (3.03) | 33 (100) | <0.0001 |
No | - | 33 (100) | 32 (96.96) | 0 (0.0) |
Clinical Profile | Low n (%) | Medium n (%) | High n (%) | No Response n (%) | p Value |
---|---|---|---|---|---|
Subunit S1 | |||||
Asymptomatic | 7 (18.9%) | 13 (35.1%) | 4 (10.8%) | 13 (35.1%) | <0.0001 |
Mild | 11 (33.3%) | 9 (27.2%) | 6 (18.1%) | 7 (21.2%) | |
Moderate | 7 (21.2%) | 6 (18.1%) | 14 (42.4%) | 6 (18.1%) | |
Severe | 2 (6.0%) | 6 (18.1%) | 24 (72.7%) | 1 (3.0%) | |
Subunit S2 | |||||
Asymptomatic | 1 (2.7%) | 0 (0.0%) | 2 (5.4%) | 34 (91.8%) | 0.3222 |
Mild | 2 (6.0%) | 0 (0.0%) | 0 (0.0%) | 31 (93.9%) | |
Moderate | 1 (3.0%) | 2 (6.0%) | 0 (0.0%) | 30 (90.9%) | |
Severe | 0 (0.0%) | 1 (3.0%) | 2 (6.0%) | 30 (90.9%) | |
N Protein | |||||
Asymptomatic | 12 (32.4%) | 8 (21.6%) | 3 (8.1%) | 14 (37.8%) | <0.0001 |
Mild | 3 (9.1%) | 17 (51.5%) | 11 (33.3%) | 2 (6.1%) | |
Moderate | 5 (15.2%) | 3 (9.1%) | 21 (63.6%) | 4 (12.1%) | |
Severe | 1 (3.0%) | 8 (24.2%) | 23 (69.7%) | 1 (3.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, S.R.; da Silva Torres, M.K.; Lima, S.S.; de Sarges, K.M.L.; Santos, E.F.d.; de Brito, M.T.F.M.; da Silva, A.L.S.; de Meira Leite, M.; da Costa, F.P.; Cantanhede, M.H.D.; et al. Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles. Viruses 2023, 15, 898. https://doi.org/10.3390/v15040898
Soares SR, da Silva Torres MK, Lima SS, de Sarges KML, Santos EFd, de Brito MTFM, da Silva ALS, de Meira Leite M, da Costa FP, Cantanhede MHD, et al. Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles. Viruses. 2023; 15(4):898. https://doi.org/10.3390/v15040898
Chicago/Turabian StyleSoares, Sinei Ramos, Maria Karoliny da Silva Torres, Sandra Souza Lima, Kevin Matheus Lima de Sarges, Erika Ferreira dos Santos, Mioni Thieli Figueiredo Magalhães de Brito, Andréa Luciana Soares da Silva, Mauro de Meira Leite, Flávia Póvoa da Costa, Marcos Henrique Damasceno Cantanhede, and et al. 2023. "Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles" Viruses 15, no. 4: 898. https://doi.org/10.3390/v15040898
APA StyleSoares, S. R., da Silva Torres, M. K., Lima, S. S., de Sarges, K. M. L., Santos, E. F. d., de Brito, M. T. F. M., da Silva, A. L. S., de Meira Leite, M., da Costa, F. P., Cantanhede, M. H. D., da Silva, R., de Oliveira Lameira Veríssimo, A., Vallinoto, I. M. V. C., Feitosa, R. N. M., Quaresma, J. A. S., Chaves, T. d. S. S., Viana, G. M. R., Falcão, L. F. M., Santos, E. J. M. d., ... da Silva, A. N. M. R. (2023). Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles. Viruses, 15(4), 898. https://doi.org/10.3390/v15040898