Abstract
The official classification of newly discovered or long-known unassigned viruses by the International Committee on Taxonomy of Viruses (ICTV) requires the deposition of coding-complete or -near-complete virus genome sequences in GenBank to fulfill a requirement of the taxonomic proposal (TaxoProp) process. However, this requirement is fairly new; thus, genomic sequence information is fragmented or absent for many already-classified viruses. As a result, taxon-wide modern phylogenetic analyses are often challenging, if not impossible. This problem is particularly eminent among viruses with segmented genomes, such as bunyavirals, which were frequently classified solely based on single-segment sequence information. To solve this issue for one bunyaviral family, Hantaviridae, we call on the community to provide additional sequence information for incompletely sequenced classified viruses by mid-June 2023. Such sequence information may be sufficient to prevent their possible declassification during the ongoing efforts to establish a coherent, consistent, and evolution-based hantavirid taxonomy.
1. Introduction
In 2017, the International Committee on Taxonomy of Viruses (ICTV) reacted to the rapid increase in virus discovery via metagenomics and metatranscriptomics by permitting an official virus classification based only on genomic sequence information, as long as that information is coding-complete (i.e., covers all open reading frames) or -near-complete (i.e., lacks only very few terminal or internal nucleotides that are difficult to resolve) [1]. This decision was based on the realization that a true depiction of the virosphere [2] would be impossible if individually characterizing viruses in the laboratory continued to be required; in addition, genomic sequence information enables large-scale phylogenetic analyses and thereby the establishment of evolutionary relationships among viruses in the absence of replicating representatives [1]. However, this decision was prospective, i.e., it applied to the assembly and evaluation of novel taxonomic proposals (TaxoProps) for the classification of newly discovered or previously unclassified viruses into taxa. (For an overview of the taxonomic classification process, the difference between species and virus, and classification methodologies, see Simmonds et al., 2023 [3]) Viruses classified by the ICTV prior to the 2017 decision remained classified even with, in some cases, the complete absence of genomic sequence information. Consequently, many virus taxa are currently mosaics of classified viruses that were placed into the official taxonomy through disparate methodologies using divergent classification criteria. This situation is untenable because the very goal of the ICTV is to “categorize the multitude of known viruses into a single classification scheme that reflects their evolutionary relationships, i.e., their individual phylogenies” [3,4].
The establishment of phylogenies requires genomic sequence information. More importantly, high quality of a virus genome sequence (e.g., sequence read depth and population analysis), redundancy (availability of equally high-quality genome sequences from different isolates of the same virus), completeness of the virus genome, and, in case of viruses with segmented genomes, each individual genome sequence derived from a single isolate enable improved and possibly complementary phylogenetic analyses using different parts of the genomes and their expression products—thus increasing confidence in the resulting taxonomic structures.
The ICTV first and foremost looks to its Study Groups to continuously improve the taxonomy of, typically, family-rank taxa with the long-term vision of achieving the ICTV goal of an accurate depiction of evolutionary virus relationships. Thus, it is largely up to these Study Groups to decide on virus classification criteria (e.g., minimal information necessary for classification) and taxon demarcation criteria (e.g., methodologies and metrics to be used for species and genus demarcation within a family). Here we express the intent of the ICTV Hantaviridae Study Group to resolve the classification problems plaguing the family Hantaviridae, with a first step envisioned to be an overhaul of the family based on analyses only, including viruses associated with coding-complete/-near-complete genome sequence availability in GenBank. We call on the hantavirid community to determine and/or provide missing sequence information for currently classified hantavirids to prevent their potential declassification and to provide such sequence information for currently unclassified viruses so that they can be assigned to species. With the annual ICTV deadline for the submission of TaxoProps this year being likely at the beginning of July, this information is needed by mid-June 2023 and then annually thereafter.
4. Discussion
Hantavirid taxonomy is clearly in disarray, as exemplified by the numerous viruses with different names in the literature that may only represent isolates of other named viruses rather than being distinct viruses (species with several members in Table 1; numerous viruses listed in Table 2). Table 1 and Table 2 clarify that the diversity of hantavirids is only incompletely represented by the current taxonomy and family-wide analyses of hantavirids, and, therefore, the most appropriate sub-family taxon distribution is largely impossible because of the lack of evolutionary meaningful taxonomic markers (e.g., segment sequences, hallmark genes, and gene motifs). Even a relatively limited hantavirid classification inclusion criterion, such as the requirement of coding-complete/-near-complete sequences, will have a noticeable impact on the current taxonomy through the declassification of at least 17 orthohantaviruses (Table 1) and the classification of up to 20 hantavirids (Table 2). Taxonomic changes would likely be even more drastic if classification inclusion criteria were set more stringently; for instance, the ICTV Hantaviridae Study Group might additionally require that the S, M, and L genome segment sequences of a particular virus must be derived from the same isolate (rather than being a mosaic from isolates collected in different places at different times) and/or that specific sequencing standards [93,94] would have to be fulfilled to increase “trust” that the sequence is correct.
We call on the hantavirid and wider bunyaviral community to provide additional and/or improved sequence information for any incompletely sequenced putative hantavirid prior to mid-June 2023 to support the ICTV Hantaviridae Study Group’s current effort to establish an updated, coherent, consistent, and evolution-based hantavirid taxonomy. These sequences ought to be deposited into GenBank, ideally along with notifying the Study Group that additional information has become available for inclusion in analyses.
During the upcoming months, the ICTV Hantaviridae Study Group will make initial decisions on:
- the minimal requirement(s) for hantavirid classification (e.g., definitions of “near-complete genome sequence” and minimal sequence quality);
- the method(s) for hantavirid classification (e.g., DEmARC and/or pairwise sequence comparison [PASC]);
- the minimum input information (e.g., concatenated S + M or S + L or M + L or S + M + L genomic segment sequences; individual phylogenies and pairwise sequence comparisons for each genome segment);
- the possible resolution of “species complexes” (i.e., species that currently harbor more than one member virus [e.g., Andes orthohantavirus/Orthohantavirus andesense]);
- which particular sequences should be regarded as type/reference sequences for each species and be ultimately represented in The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database.
All of these decisions will crucially depend on the availability of expanded high-quality hantavirid genomic sequence information. In the absence of this information, a decision may be forced to drastically reboot and simplify hantavirid taxonomy by removing the “virus status” from many unclassified hantavirids to discourage the use of their currently assigned names—effectively putting many hantavirids “on hold” until sufficient sequence information becomes available to assess their taxonomic statuses.
Author Contributions
Conceptualization, J.H.K.; writing—original draft preparation, J.H.K.; writing—review and editing, all authors. All authors have read and agreed to the published version of the manuscript.
Funding
This work was supported in part through Laulima Government Solutions, LLC, prime contract with the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC, under Contract No. HHSN272201800013C.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Acknowledgments
The authors thank Anya Crane (Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA) for critically editing the manuscript.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Simmonds, P.; Adams, M.J.; Benkő, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; et al. Consensus statement: Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Kuhn, J.H. Viruses defined by the position of the virosphere within the replicator space. Microbiol. Mol. Biol. Rev. 2021, 85, e0019320. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Adriaenssens, E.M.; Zerbini, F.M.; Abrescia, N.G.A.; Aiewsakun, P.; Alfenas-Zerbini, P.; Bao, Y.; Barylski, J.; Drosten, C.; Duffy, S.; et al. Four principles to establish a universal virus taxonomy. PLoS Biol. 2023, 21, e3001922. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses. Charge to the ICTV. The Basis for Taxonomic Classification by the ICTV. 2023. Available online: https://ictv.global/about/charge (accessed on 15 February 2023).
- Lee, H.W.; Lee, P.W.; Johns, K.M. Isolation of the Etiologic Agent of korean hemorrhagic fever. J. Infect. Dis. 1978, 137, 298–308. [Google Scholar] [CrossRef] [PubMed]
- 李鎬汪; 李平佑. 韓國型 出血热—I. 原因 抗原 및 抗體 證明 [Korean hemorrhagic fever - I. Demonstration of causative antigen and antibodies]. 대한내파학회장지 1976, 19, 371–383. [Google Scholar]
- 李鎬汪; 李平佑. 韓國型 出血热—II. 病原體 分离 [Korean hemorrhagic Fever - II. Isolation of the etiologic agent]. 大韓바이러스學會誌 1977, 7, 19–29. [Google Scholar]
- French, G.R.; Foulke, R.S.; Brand, O.A.; Eddy, G.A.; Lee, H.W.; Lee, P.W. Korean hemorrhagic fever: Propagation of the etiologic agent in a cell line of human origin. Science 1981, 211, 1046–1048. [Google Scholar] [CrossRef] [PubMed]
- Schmaljohn, C.S.; Dalrymple, J.M. Analysis of Hantaan virus RNA: Evidence for a new genus of Bunyaviridae. Virology 1983, 131, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Schmaljohn, C.S.; Hasty, S.E.; Dalrymple, J.M. Antigenic and molecular properties of eight viruses in the newly proposed Hantavirus genus of Bunyaviridae. Arthropod Borne Virus Inf. Exch. 1984, 158–159. [Google Scholar]
- Schmaljohn, C.S.; Hasty, S.E.; Harrison, S.A.; Dalrymple, J.M. Characterization of Hantaan virions, the prototype virus of hemorrhagic fever with renal syndrome. J. Infect. Dis. 1983, 148, 1005–1012. [Google Scholar] [CrossRef]
- Schmaljohn, C.S.; Hasty, S.E.; Dalrymple, J.M.; LeDuc, J.W.; Lee, H.W.; von Bonsdorff, C.-H.; Brummer-Korvenkontio, M.; Vaheri, A.; Tsai, T.F.; Regnery, H.L.; et al. Antigenic and genetic properties of viruses linked to hemorrhagic fever with renal syndrome. Science 1985, 227, 1041–1044. [Google Scholar] [CrossRef]
- Francki, R.I.B.; Fauquet, C.M.; Knudson, D.L.; Brown, F. Genus Hantavirus. In Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplement, vol. 2; Springer: Vienna, Austria, 1991. [Google Scholar]
- International Committee on Taxonomy of Viruses. Taxon Details. Genus: Orthohantavirus. 1987 Plenary Session Vote 12 August 1987 in Edmonton (MSL #10). 2022. Available online: https://ictv.global/taxonomy/taxondetails?taxnode_id=202100020 (accessed on 15 February 2023).
- Maes, P.; Alkhovsky, S.V.; Bào, Y.; Beer, M.; Birkhead, M.; Briese, T.; Buchmeier, M.J.; Calisher, C.H.; Charrel, R.N.; Choi, I.R.; et al. Taxonomy of the family Arenaviridae and the order Bunyavirales: Update 2018. Arch. Virol. 2018, 163, 2295–2310. [Google Scholar] [CrossRef]
- Laenen, L.; Vergote, V.; Calisher, C.H.; Klempa, B.; Klingström, J.; Kuhn, J.H.; Maes, P. Hantaviridae: Current classification and future perspectives. Viruses 2019, 11, 788. [Google Scholar] [CrossRef]
- Maes, P.; Adkins, S.; Alkhovsky, S.V.; Avšič-Županc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, É.; Blair, C.D.; Briese, T.; et al. Taxonomy of the order Bunyavirales: Second update 2018. Arch. Virol. 2019, 164, 927–941. [Google Scholar] [CrossRef]
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avšič-Županc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, É.; Blair, C.D.; et al. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Schmaljohn, C.S. A brief history of bunyaviral family Hantaviridae. Diseases 2023, 11, 38. [Google Scholar]
- Kuhn, J.H.; Adkins, S.; Alkhovsky, S.V.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; Ballinger, M.J.; Bandte, M.; Beer, M.; et al. 2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch. Virol. 2022, 167, 2857–2906. [Google Scholar] [CrossRef]
- Plyusnin, A.; Beaty, B.J.; Elliott, R.M.; Goldbach, R.; Kormelink, R.; Lundkvist, Å.; Schmaljohn, C.S.; Tesh, R.B. Family Bunyaviridae. In Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier/Academic Press: London, UK, 2011; pp. 725–741. [Google Scholar]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Varsani, A.; Wolf, Y.I.; Yutin, N.; Zerbini, F.M.; Kuhn, J.H. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 2020, 84, e00061-19. [Google Scholar] [CrossRef]
- Wolf, Y.I.; Kazlauskas, D.; Iranzo, J.; Lucía-Sanz, A.; Kuhn, J.H.; Krupovic, M.; Dolja, V.V.; Koonin, E.V. Origins and evolution of the global RNA virome. mBio 2018, 9, e02329-18. [Google Scholar] [CrossRef]
- Guardado-Calvo, P.; Rey, F.A. The viral vlass II membrane fusion machinery: Divergent evolution from an ancestral heterodimer. Viruses 2021, 13, 2368. [Google Scholar] [CrossRef]
- Postler, T.S.; Bradfute, S.B.; Calisher, C.H.; Klingström, J.; Laenen, L.; Maes, P.; Kuhn, J.H. Rename all species in the family to comply with the ICTV-mandated binomial format (Bunyavirales: Hantaviridae). International Committee for Taxonomy of Viruses proposal (Taxoprop) No. 2021.013M. 2022. Available online: https://ictv.global/filebrowser/download/7387 (accessed on 15 February 2023).
- Zerbini, F.M.; Siddell, S.G.; Mushegian, A.R.; Walker, P.J.; Lefkowitz, E.J.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Dutilh, B.E.; García, M.L.; Junglen, S.; et al. Differentiating between viruses and virus species by writing their names correctly. Arch. Virol. 2022, 167, 1231–1234. [Google Scholar] [CrossRef]
- Weiss, S.; Sudi, L.E.; Düx, A.; Mangu, C.D.; Ntinginya, N.E.; Shirima, G.M.; Köndgen, S.; Schubert, G.; Witkowski, P.T.; Muyembe, J.J.; et al. Kiwira Virus, a newfound hantavirus discovered in free-tailed bats (Molossidae) in East and Central Africa. Viruses 2022, 14, 2368. [Google Scholar] [CrossRef]
- Costa, V.A.; Mifsud, J.C.O.; Gilligan, D.; Williamson, J.E.; Holmes, E.C.; Geoghegan, J.L. Metagenomic sequencing reveals a lack of virus exchange between native and invasive freshwater fish across the Murray-Darling Basin, Australia. Virus Evol. 2021, 7, veab034. [Google Scholar] [CrossRef]
- Geoghegan, J.L.; Di Giallonardo, F.; Wille, M.; Ortiz-Baez, A.S.; Costa, V.A.; Ghaly, T.; Mifsud, J.C.O.; Turnbull, O.M.H.; Bellwood, D.R.; Williamson, J.E.; et al. Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol. 2021, 7, veab005. [Google Scholar] [CrossRef]
- Guo, W.-P.; Lin, X.-D.; Wang, W.; Tian, J.-H.; Cong, M.-L.; Zhang, H.-L.; Wang, M.-R.; Zhou, R.-H.; Wang, J.-B.; Li, M.-H.; et al. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathog. 2013, 9, e1003159. [Google Scholar] [CrossRef]
- Weiss, S.; Witkowski, P.T.; Auste, B.; Nowak, K.; Weber, N.; Fahr, J.; Mombouli, J.-V.; Wolfe, N.D.; Drexler, J.F.; Drosten, C.; et al. Hantavirus in bat, Sierra Leone. Emerg. Infect. Dis. 2012, 18, 159–161. [Google Scholar] [CrossRef]
- Kouadio, L.; Nowak, K.; Couacy-Hymann, E.; Akoua-Koffi, C.; Düx, A.; Zimmermann, F.; Allali, B.K.; Kourouma, L.; Bangoura, K.; Koendgen, S.; et al. Detection of possible spillover of a novel hantavirus in a Natal mastomys from Guinea. Virus Genes 2020, 56, 95–98. [Google Scholar] [CrossRef]
- Sumibcay, L.; Kadjo, B.; Gu, S.H.; Kang, H.J.; Lim, B.K.; Cook, J.A.; Song, J.-W.; Yanagihara, R. Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d’Ivoire. Virol. J. 2012, 9, 34. [Google Scholar] [CrossRef]
- Arai, S.; Aoki, K.; Sơn, N.T.; Tú, V.T.; Kikuchi, F.; Kinoshita, G.; Fukui, D.; Thành, H.T.; Gu, S.H.; Yoshikawa, Y.; et al. Đakrông virus, a novel mobatvirus (Hantaviridae) harbored by the Stoliczka’s Asian trident bat (Aselliscus stoliczkanus) in Vietnam. Sci. Rep. 2019, 9, 10239. [Google Scholar] [CrossRef]
- Kang, H.J.; Gu, S.H.; Yashina, L.N.; Cook, J.A.; Yanagihara, R. Highly divergent genetic variants of soricid-borne Altai virus (Hantaviridae) in Eurasia suggest ancient host-switching events. Viruses 2019, 11, 857. [Google Scholar] [CrossRef]
- Yashina, L.N.; Abramov, S.A.; Gutorov, V.V.; Dupal, T.A.; Krivopalov, A.V.; Panov, V.V.; Danchinova, G.A.; Vinogradov, V.V.; Luchnikova, E.M.; Hay, J.; et al. Seewis virus: Phylogeography of a shrew-borne hantavirus in Siberia, Russia. Vector Borne Zoonotic Dis. 2010, 10, 585–591. [Google Scholar] [CrossRef]
- Witkowski, P.T.; Drexler, J.F.; Kallies, R.; Ličková, M.; Bokorová, S.; Maganga, G.D.; Szemes, T.; Leroy, E.M.; Krüger, D.H.; Drosten, C.; et al. Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses. Infect. Genet. Evol. 2016, 41, 113–119. [Google Scholar] [CrossRef]
- Zana, B.; Kemenesi, G.; Buzás, D.; Csorba, G.; Görföl, T.; Khan, F.A.A.; Tahir, N.F.D.A.; Zeghbib, S.; Madai, M.; Papp, H.; et al. Molecular identification of a novel hantavirus in Malaysian bronze tube-nosed bats (Murina aenea). Viruses 2019, 11, 887. [Google Scholar] [CrossRef]
- Yashina, L.N.; Panov, V.V.; Abramov, S.A.; Smetannikova, N.A.; Luchnikova, E.M.; Dupal, T.A.; Krivopalov, A.V.; Arai, S.; Yanagihara, R. Academ Virus, a novel hantavirus in the Siberian mole (Talpa altaica) from Russia. Viruses 2022, 14, 309. [Google Scholar] [CrossRef]
- Chu, Y.K.; Owen, R.D.; Gonzalez, L.M.; Jonsson, C.B. The complex ecology of hantavirus in Paraguay. Am. J. Trop. Med. Hyg. 2003, 69, 263–268. [Google Scholar] [CrossRef]
- Bennett, S.N.; Gu, S.H.; Kang, H.J.; Arai, S.; Yanagihara, R. Reconstructing the evolutionary origins and phylogeography of hantaviruses. Trends Microbiol. 2014, 22, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Rosa, E.S.; Mills, J.N.; Padula, P.J.; Elkhoury, M.R.; Ksiazek, T.G.; Mendes, W.S.; Santos, E.D.; Araújo, G.C.; Martinez, V.P.; Rosa, J.F.S.T.; et al. Newly recognized hantaviruses associated with hantavirus pulmonary syndrome in northern Brazil: Partial genetic characterization of viruses and serologic implication of likely reservoirs. Vector Borne Zoonotic Dis. 2005, 5, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.K.; Goodin, D.; Owen, R.D.; Koch, D.; Jonsson, C.B. Sympatry of 2 hantavirus strains, Paraguay, 2003-2007. Emerg. Infect. Dis. 2009, 15, 1977–1980. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.M.; de Souza, L.T.; Ferreira, I.B.; Pereira, L.E.; Ksiazek, T.G.; Rollin, P.E.; Peters, C.J.; Nichol, S.T. Genetic investigation of novel hantaviruses causing fatal HPS in Brazil. J. Med. Virol. 1999, 59, 527–535. [Google Scholar] [CrossRef]
- Raboni, S.M.; Probst, C.M.; Bordignon, J.; Zeferino, A.; dos Santos, C.N. Hantaviruses in Central South America: Phylogenetic analysis of the S segment from HPS cases in Paraná, Brazil. J. Med. Virol. 2005, 76, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Kang, H.J.; Gu, S.H.; Ohdachi, S.D.; Cook, J.A.; Yashina, L.N.; Tanaka-Taya, K.; Abramov, S.A.; Morikawa, S.; Okabe, N.; et al. Genetic diversity of Artybash virus in the Laxmann’s shrew (Sorex caecutiens). Vector Borne Zoonotic Dis. 2016, 16, 468–475. [Google Scholar] [CrossRef]
- Arai, S.; Bennett, S.N.; Sumibcay, L.; Cook, J.A.; Song, J.-W.; Hope, A.; Parmenter, C.; Nerurkar, V.R.; Yates, T.L.; Yanagihara, R. Phylogenetically distinct hantaviruses in the masked shrew (Sorex cinereus) and dusky shrew (Sorex monticolus) in the United States. Am. J. Trop. Med. Hyg. 2008, 78, 348–351. [Google Scholar] [CrossRef]
- Kang, H.J.; Kadjo, B.; Dubey, S.; Jacquet, F.; Yanagihara, R. Molecular evolution of Azagny virus, a newfound hantavirus harbored by the West African pygmy shrew (Crocidura obscurior) in Côte d’Ivoire. Virol. J. 2011, 8, 373. [Google Scholar] [CrossRef]
- Gligic, A.; Dimkovic, N.; Xiao, S.-Y.; Buckle, G.J.; Jovanovic, D.; Velimirovic, D.; Stojanovic, R.; Obradovic, M.; Diglisic, G.; Micic, J.; et al. Belgrade virus: A new hantavirus causing severe hemorrhagic fever with renal syndrome in Yugoslavia. J. Infect. Dis. 1992, 166, 113–120. [Google Scholar] [CrossRef]
- Padula, P.; Della Valle, M.G.; Alai, M.G.; Cortada, P.; Villagra, M.; Gianella, A. Andes virus and first case report of Bermejo virus causing fatal pulmonary syndrome. Emerg. Infect. Dis. 2002, 8, 437–439. [Google Scholar] [CrossRef]
- Morzunov, S.P.; Rowe, J.E.; Ksiazek, T.G.; Peters, C.J.; St Jeor, S.C.; Nichol, S.T. Genetic analysis of the diversity and origin of hantaviruses in Peromyscus leucopus mice in North America. J. Virol. 1998, 72, 57–64. [Google Scholar] [CrossRef]
- Gu, S.H.; Markowski, J.; Kang, H.J.; Hejduk, J.; Sikorska, B.; Liberski, P.P.; Yanagihara, R. Boginia virus, a newfound hantavirus harbored by the Eurasian water shrew (Neomys fodiens) in Poland. Virol. J. 2013, 10, 160. [Google Scholar] [CrossRef]
- Bohlman, M.C.; Morzunov, S.P.; Meissner, J.; Taylor, M.B.; Ishibashi, K.; Rowe, J.; Levis, S.; Enria, D.; St Jeor, S.C. Analysis of hantavirus genetic diversity in Argentina: S segment-derived phylogeny. J. Virol. 2002, 76, 3765–3773. [Google Scholar] [CrossRef]
- Vincent, M.J.; Quiroz, E.; Gracia, F.; Sanchez, A.J.; Ksiazek, T.G.; Kitsutani, P.T.; Ruedas, L.A.; Tinnin, D.S.; Caceres, L.; Garcia, A.; et al. Hantavirus pulmonary syndrome in Panama: Identification of novel hantaviruses and their likely reservoirs. Virology 2000, 277, 14–19. [Google Scholar] [CrossRef]
- De Sousa, R.L.; Moreli, M.L.; Borges, A.A.; Campos, G.M.; Livonesi, M.C.; Figueiredo, L.T.; Pinto, A.A. Natural host relationships and genetic diversity of rodent-associated hantaviruses in southeastern Brazil. Intervirology 2008, 51, 299–310. [Google Scholar] [CrossRef]
- Arai, S.; Song, J.-W.; Sumibcay, L.; Bennett, S.N.; Nerurkar, V.R.; Parmenter, C.; Cook, J.A.; Yates, T.L.; Yanagihara, R. Hantavirus in northern short-tailed shrew, United States. Emerg. Infect. Dis. 2007, 13, 1420–1423. [Google Scholar] [CrossRef]
- Padula, P.J.; Colavecchia, S.B.; Martínez, V.P.; Gonzalez Della Valle, M.O.; Edelstein, A.; Miguel, S.D.; Russi, J.; Riquelme, J.M.; Colucci, N.; Almirón, M.; et al. Genetic diversity, distribution, and serological features of hantavirus infection in five countries in South America. J. Clin. Microbiol. 2000, 38, 3029–3035. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, J.; Wang, Z.-X.; Wang, D.-M.; Yu, C.; Zhou, J.-Z.; Fu, Z.F.; Zhang, Y.-Z. Genetic characterization of hantaviruses isolated from Guizhou, China: Evidence for spillover and reassortment in nature. J. Med. Virol. 2008, 80, 1033–1041. [Google Scholar] [CrossRef]
- 邓洪岩; 王静林; 李利利; 信云云; 刘蒙蒙; 王云段. 云南蝙蝠携带新型汉坦病毒及其基因组分析 [A novel hantavirus carried by bats in Yunnan and its genome analysis]. 中华实验和临床病毒学杂志 2018, 32, 140–144. [Google Scholar]
- LeDuc, J.W.; Smith, G.A.; Johnson, K.M. Hantaan-like viruses from domestic rats captured in the United States. Am. J. Trop. Med. Hyg. 1984, 33, 992–998. [Google Scholar] [CrossRef]
- Schmaljohn, C.S.; Arikawa, J.; Hasty, S.E.; Rasmussen, L.; Lee, H.W.; Lee, P.W.; Dalrymple, J.M. Conservation of antigenic properties and sequences encoding the envelope proteins of prototype Hantaan virus and two virus isolates from Korean haemorrhagic fever patients. J. Gen. Virol. 1988, 69 (Pt 8), 1949–1955. [Google Scholar] [CrossRef]
- Levis, S.; Rowe, J.E.; Morzunov, S.; Enria, D.A.; St Jeor, S. New hantaviruses causing hantavirus pulmonary syndrome in central Argentina. Lancet 1997, 349, 998–999. [Google Scholar] [CrossRef]
- Song, W.; Torrez-Martinez, N.; Irwin, W.; Harrison, F.J.; Davis, R.; Ascher, M.; Jay, M.; Hjelle, B. Isla Vista virus: A genetically novel hantavirus of the California vole Microtus californicus. J. Gen. Virol. 1995, 76 (Pt 12), 3195–3199. [Google Scholar] [CrossRef]
- Chu, Y.K.; Milligan, B.; Owen, R.D.; Goodin, D.G.; Jonsson, C.B. Phylogenetic and geographical relationships of hantavirus strains in eastern and western Paraguay. Am. J. Trop. Med. Hyg. 2006, 75, 1127–1134. [Google Scholar] [CrossRef]
- Wu, Z.; Du, J.; Lu, L.; Yang, L.; Dong, J.; Sun, L.; Zhu, Y.; Liu, Q.; Jin, Q. Detection of hantaviruses and arenaviruses in three-toed jerboas from the Inner Mongolia Autonomous Region, China. Emerg. Microbes Infect. 2018, 7, 35. [Google Scholar] [CrossRef]
- Vasconcelos, M.I.; Lima, V.P.; Iversson, L.B.; Rosa, M.D.; da Rosa, A.P.; da Rosa, E.S.; Pereira, L.E.; Nassar, E.; Katz, G.; Matida, L.H.; et al. Hantavirus pulmonary syndrome in the rural area of Juquitiba, Sao Paulo metropolitan area, Brazil. Rev. Inst. Med. Trop. São Paulo 1997, 39, 237–238. [Google Scholar]
- Johansson, P.; Yap, G.; Low, H.T.; Siew, C.C.; Kek, R.; Ng, L.C.; Bucht, G. Molecular characterization of two hantavirus strains from different rattus species in Singapore. Virol. J. 2010, 7, 15. [Google Scholar] [CrossRef]
- Thomason, A.G.; Begon, M.; Bradley, J.E.; Paterson, S.; Jackson, J.A. Endemic hantavirus in field voles, Northern England. Emerg. Infect. Dis. 2017, 23, 1033–1035. [Google Scholar] [CrossRef] [PubMed]
- Hugot, J.-P.; Vanmechelen, B.; Maes, P. Landiras virus, a novel hantavirus hosted by Talpa aquitina n.sp, a recently disocvered south European mole species. Bull. Acad. Vét. Fr. 2023. [Google Scholar]
- Muthusinghe, D.S.; Shimizu, K.; Lokupathirage, S.M.W.; Wei, Z.; Sarathkumara, Y.D.; Fonseka, G.R.A.; Senarathne, P.; Koizumi, N.; Kawakami, T.; Koizumi, A.; et al. Identification of novel rodent-borne orthohantaviruses in an endemic area of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. Viruses 2021, 13, 1984. [Google Scholar] [CrossRef] [PubMed]
- Baek, L.J.; Yanagihara, R.; Gibbs, C.J., Jr.; Miyazaki, M.; Gajdusek, D.C. Leakey virus: A new hantavirus isolated from Mus musculus in the United States. J. Gen. Virol. 1988, 69 (Pt 12), 3129–3132. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.J.; Abbott, K.D.; Nichol, S.T. Genetic identification and characterization of Limestone Canyon virus, a unique Peromyscus-borne hantavirus. Virology 2001, 286, 345–353. [Google Scholar] [CrossRef]
- Ling, J.; Sironen, T.; Voutilainen, L.; Hepojoki, S.; Niemimaa, J.; Isoviita, V.M.; Vaheri, A.; Henttonen, H.; Vapalahti, O. Hantaviruses in Finnish soricomorphs: Evidence for two distinct hantaviruses carried by Sorex araneus suggesting ancient host-switch. Infect. Genet. Evol. 2014, 27C, 51–61. [Google Scholar] [CrossRef]
- Sibold, C.; Sparr, S.; Schulz, A.; Labuda, M.; Kozuch, O.; Lysý, J.; Krüger, D.H.; Meisel, H. Genetic characterization of a new hantavirus detected in Microtus arvalis from Slovakia. Virus Genes 1995, 10, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Baek, L.J.; Nagle, J.W.; Schlitter, D.; Yanagihara, R. Genetic and phylogenetic analyses of hantaviral sequences amplified from archival tissues of deer mice (Peromyscus maniculatus nubiterrae) captured in the eastern United States. Arch. Virol. 1996, 141, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, J.A.; Torrez-Martinez, N.; Neill, S.U.; Moore, G.M.; Hicks, B.N.; Pichuantes, S.; Nguyen, A.; Bharadwaj, M.; Hjelle, B. Cocirculation of multiple hantaviruses in Texas, with characterization of the small (S) genome of a previously undescribed virus of cotton rats (Sigmodon hispidus). Am. J. Trop. Med. Hyg. 1996, 55, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Melo-Silva, C.R.; Maranhão, A.Q.; Nagasse-Sugahara, T.K.; Bisordi, I.; Suzuki, A.; Brigido, M.M. Characterization of hantaviruses circulating in Central Brazil. Infect. Genet. Evol. 2009, 9, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.-K.; Owen, R.D.; Sánchez-Hernández, C.; Romero-Almaraz Mde, L.; Jonsson, C.B. Genetic characterization and phylogeny of a hantavirus from Western Mexico. Virus Res. 2008, 131, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.-Q.; Gong, Z.-D.; Fang, L.-Q.; Jiang, J.-F.; Zhang, J.-S.; Zhao, Q.-M.; Cao, W.-C. A new hantavirus from the stripe-backed shrew (Sorex cylindricauda) in the People’s Republic of China. Virus Res. 2014, 184, 82–86. [Google Scholar] [CrossRef]
- Hjelle, B.; Anderson, B.; Torrez-Martinez, N.; Song, W.; Gannon, W.L.; Yates, T.L. Prevalence and geographic genetic variation of hantaviruses of New World harvest mice (Reithrodontomys): Identification of a divergent genotype from a Costa Rican Reithrodontomys mexicanus. Virology 1995, 207, 452–459. [Google Scholar] [CrossRef]
- Drewes, S.; Jeske, K.; Straková, P.; Balčiauskas, L.; Ryll, R.; Balčiauskienė, L.; Kohlhause, D.; Schnidrig, G.A.; Hiltbrunner, M.; Špakova, A.; et al. Identification of a novel hantavirus strain in the root vole (Microtus oeconomus) in Lithuania, Eastern Europe. Infect. Genet. Evol. 2021, 90, 104520. [Google Scholar] [CrossRef]
- Arikawa, J.; Lapenotiere, H.F.; Iacono-Connors, L.; Wang, M.L.; Schmaljohn, C.S. Coding properties of the S and the M genome segments of Sapporo rat virus: Comparison to other causative agents of hemorrhagic fever with renal syndrome. Virology 1990, 176, 114–125. [Google Scholar] [CrossRef]
- Zou, Y.; Xiao, Q.-Y.; Dong, X.; Lv, W.; Zhang, S.-P.; Li, M.-H.; Plyusnin, A.; Zhang, Y.-Z. Genetic analysis of hantaviruses carried by reed voles Microtus fortis in China. Virus Res. 2008, 137, 122–128. [Google Scholar] [CrossRef]
- Декoненкo, А.Е.; Ткаченкo, Е.А.; Липская, Г.Ю.; Дзагурoва, Т.К.; Иванoв, А.П.; Иванoв, Л.И.; Слoнoва, Р.А.; Маркешин, С.А.; Иванидзе, Э.А.; Шуткoва, Т.М.; et al. Генетическая дифференциация хантавирусoв с пoмoщью пoлимеразнoй цепнoй реакции и секвенирoвания [Genetic differentiation of hantaviruses by polymerase chain reaction and sequencing]. Вoпр Вирусoл 1996, 41, 24–27. [Google Scholar]
- Klempa, B.; Fichet-Calvet, E.; Lecompte, E.; Auste, B.; Aniskin, V.; Meisel, H.; Barrière, P.; Koivogui, L.; ter Meulen, J.; Krüger, D.H. Novel hantavirus sequences in Shrew, Guinea. Emerg. Infect. Dis. 2007, 13, 520–522. [Google Scholar] [CrossRef]
- Jeske, K.; Hiltbrunner, M.; Drewes, S.; Ryll, R.; Wenk, M.; Špakova, A.; Petraitytė-Burneikienė, R.; Heckel, G.; Ulrich, R.G. Field vole-associated Traemmersee hantavirus from Germany represents a novel hantavirus species. Virus Genes 2019, 55, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.D.; Forshey, B.M.; Vallejo, E.; Agudo, R.; Vargas, J.; Blazes, D.L.; Guevara, C.; Laguna-Torres, V.A.; Halsey, E.S.; Kochel, T.J. Novel strain of Andes virus associated with fatal human infection, central Bolivia. Emerg. Infect. Dis. 2012, 18, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.H.; Arai, S.; Yu, H.-T.; Lim, B.K.; Kang, H.J.; Yanagihara, R. Genetic variants of Cao Bang hantavirus in the Chinese mole shrew (Anourosorex squamipes) and Taiwanese mole shrew (Anourosorex yamashinai). Infect. Genet. Evol. 2016, 40, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Gu, S.H.; Cook, J.A.; Yanagihara, R. Dahonggou Creek virus, a divergent lineage of hantavirus harbored by the long-tailed mole (Scaptonyx fusicaudus). Trop. Med. Health 2016, 44, 16. [Google Scholar] [CrossRef]
- Kang, H.J.; Stanley, W.T.; Esselstyn, J.A.; Gu, S.H.; Yanagihara, R. Expanded host diversity and geographic distribution of hantaviruses in sub-Saharan Africa. J. Virol. 2014, 88, 7663–7667. [Google Scholar] [CrossRef]
- Harding, E.F.; Russo, A.G.; Yan, G.J.H.; Mercer, L.K.; White, P.A. Revealing the uncharacterised diversity of amphibian and reptile viruses. ISME Commun. 2022, 2, 95. [Google Scholar] [CrossRef]
- Käfer, S.; Paraskevopoulou, S.; Zirkel, F.; Wieseke, N.; Donath, A.; Petersen, M.; Jones, T.C.; Liu, S.; Zhou, X.; Middendorf, M.; et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog. 2019, 15, e1008224. [Google Scholar] [CrossRef]
- Ladner, J.T.; Beitzel, B.; Chain, P.S.; Davenport, M.G.; Donaldson, E.F.; Frieman, M.; Kugelman, J.R.; Kuhn, J.H.; O’Rear, J.; Sabeti, P.C.; et al. Standards for sequencing viral genomes in the era of high-throughput sequencing. mBio 2014, 5, e01360-14. [Google Scholar] [CrossRef]
- Roux, S.; Adriaenssens, E.M.; Dutilh, B.E.; Koonin, E.V.; Kropinski, A.M.; Krupovic, M.; Kuhn, J.H.; Lavigne, R.; Brister, J.R.; Varsani, A.; et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 2019, 37, 29–37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).