Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = mobatvirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1761 KiB  
Article
Serological Evidence of Hantavirus in Bats from the Brazilian Atlantic Forest: An Investigation of Seroreactivity and Cross-Reactivity of Neotropical Bat Samples Using Nucleoproteins of Rodent- and Bat-Borne Hantaviruses
by Caroline Lacorte Rangel, Silvia da Silva Fontes, Marcus Vinicius de Mattos Silva, Jorlan Fernandes, Janaina Figueira Mansur, Emmanuel Messias Vilar, Sócrates Fraga da Costa-Neto, Roberto Leonan Morim Novaes, Pedro Cordeiro-Estrela, Ricardo Moratelli, Elba Regina Sampaio de Lemos, Ronaldo Mohana Borges, Rodrigo Nunes Rodrigues-da-Silva and Renata Carvalho de Oliveira
Viruses 2024, 16(12), 1857; https://doi.org/10.3390/v16121857 - 29 Nov 2024
Cited by 1 | Viewed by 1315
Abstract
Hantaviruses are zoonotic pathogens associated with severe human diseases such as hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Despite the extensive study of rodent-borne hantaviruses, research on bat-associated hantaviruses remains limited. This study aimed to investigate the seroprevalence and cross-reactivity of [...] Read more.
Hantaviruses are zoonotic pathogens associated with severe human diseases such as hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Despite the extensive study of rodent-borne hantaviruses, research on bat-associated hantaviruses remains limited. This study aimed to investigate the seroprevalence and cross-reactivity of neotropical bat samples with rodent- and bat-associated recombinant hantavirus nucleoproteins (rNPs) to improve hantavirus surveillance in the Brazilian Atlantic Forest. The studied bat population consisted of 336 blood samples collected over nearly a decade in five Brazilian states (Bahia, Rio de Janeiro, Santa Catarina, Paraná, and Minas Gerais). Antibodies were detected using IgG ELISA assays with rNPs from bat-borne Mobatvirus xuansonense (XSV) and Loanvirus brunaense (BRNV) and the rodent-borne hantaviruses Orthohantavirus andesense (ANDV) and Orthohantavirus seoulense (SEOV). Results indicated a higher seroprevalence for the BRNV rNP (36.6%) compared to ANDV (7.4%), SEOV (5.7%), and XSV (0.6%). The high sensitivity of the BRNV rNP and the cross-reactivity observed with the ANDV rNP, the main protein used for serological tests in the Americas, indicates that BRNV rNP is a better antigen for the accurate detection of antibodies against hantaviruses in Brazilian bats. These findings underscore the presence of unknown hantaviruses antigenically similar to BRNV in Brazilian bat populations and highlight the urgent need for identifying better antigens for comprehensive hantavirus monitoring in bats. Full article
(This article belongs to the Special Issue Viral Hemorrhagic Disease)
Show Figures

Figure 1

12 pages, 446 KiB  
Commentary
Pending Reorganization of Hantaviridae to Include Only Completely Sequenced Viruses: A Call to Action
by Jens H. Kuhn, Steven B. Bradfute, Charles H. Calisher, Boris Klempa, Jonas Klingström, Lies Laenen, Gustavo Palacios, Connie S. Schmaljohn, Nicole D. Tischler and Piet Maes
Viruses 2023, 15(3), 660; https://doi.org/10.3390/v15030660 - 28 Feb 2023
Cited by 16 | Viewed by 3419
Abstract
The official classification of newly discovered or long-known unassigned viruses by the International Committee on Taxonomy of Viruses (ICTV) requires the deposition of coding-complete or -near-complete virus genome sequences in GenBank to fulfill a requirement of the taxonomic proposal (TaxoProp) process. However, this [...] Read more.
The official classification of newly discovered or long-known unassigned viruses by the International Committee on Taxonomy of Viruses (ICTV) requires the deposition of coding-complete or -near-complete virus genome sequences in GenBank to fulfill a requirement of the taxonomic proposal (TaxoProp) process. However, this requirement is fairly new; thus, genomic sequence information is fragmented or absent for many already-classified viruses. As a result, taxon-wide modern phylogenetic analyses are often challenging, if not impossible. This problem is particularly eminent among viruses with segmented genomes, such as bunyavirals, which were frequently classified solely based on single-segment sequence information. To solve this issue for one bunyaviral family, Hantaviridae, we call on the community to provide additional sequence information for incompletely sequenced classified viruses by mid-June 2023. Such sequence information may be sufficient to prevent their possible declassification during the ongoing efforts to establish a coherent, consistent, and evolution-based hantavirid taxonomy. Full article
12 pages, 3572 KiB  
Review
A Brief History of Bunyaviral Family Hantaviridae
by Jens H. Kuhn and Connie S. Schmaljohn
Diseases 2023, 11(1), 38; https://doi.org/10.3390/diseases11010038 - 28 Feb 2023
Cited by 30 | Viewed by 4305
Abstract
The discovery of Hantaan virus as an etiologic agent of hemorrhagic fever with renal syndrome in South Korea in 1978 led to identification of related pathogenic and nonpathogenic rodent-borne viruses in Asia and Europe. Their global distribution was recognized in 1993 after connecting [...] Read more.
The discovery of Hantaan virus as an etiologic agent of hemorrhagic fever with renal syndrome in South Korea in 1978 led to identification of related pathogenic and nonpathogenic rodent-borne viruses in Asia and Europe. Their global distribution was recognized in 1993 after connecting newly discovered relatives of these viruses to hantavirus pulmonary syndrome in the Americas. The 1971 description of the shrew-infecting Hantaan-virus-like Thottapalayam virus was long considered an anomaly. Today, this virus and many others that infect eulipotyphlans, bats, fish, rodents, and reptiles are classified among several genera in the continuously expanding family Hantaviridae. Full article
10 pages, 1605 KiB  
Article
Kiwira Virus, a Newfound Hantavirus Discovered in Free-tailed Bats (Molossidae) in East and Central Africa
by Sabrina Weiss, Lwitiho E. Sudi, Ariane Düx, Chacha D. Mangu, Nyanda Elias Ntinginya, Gabriel M. Shirima, Sophie Köndgen, Grit Schubert, Peter T. Witkowski, Jean-Jacques Muyembe, Steve Ahuka, Boris Klempa, Fabian H. Leendertz and Detlev H. Krüger
Viruses 2022, 14(11), 2368; https://doi.org/10.3390/v14112368 - 27 Oct 2022
Cited by 11 | Viewed by 4916
Abstract
A novel hantavirus, named Kiwira virus, was molecularly detected in six Angolan free-tailed bats (Mops condylurus, family Molossidae) captured in Tanzania and in one free-tailed bat in the Democratic Republic of Congo. Hantavirus RNA was found in different organs, with the [...] Read more.
A novel hantavirus, named Kiwira virus, was molecularly detected in six Angolan free-tailed bats (Mops condylurus, family Molossidae) captured in Tanzania and in one free-tailed bat in the Democratic Republic of Congo. Hantavirus RNA was found in different organs, with the highest loads in the spleen. Nucleotide sequences of large parts of the genomic S and L segments were determined by in-solution hybridisation capture and high throughput sequencing. Phylogenetic analyses placed Kiwira virus into the genus Mobatvirus of the family Hantaviridae, with the bat-infecting Quezon virus and Robina virus as closest relatives. The detection of several infected individuals in two African countries, including animals with systemic hantavirus infection, provides evidence of active replication and a stable circulation of Kiwira virus in M. condylurus bats and points to this species as a natural host. Since the M. condylurus home range covers large regions of Sub-Saharan Africa and the species is known to roost inside and around human dwellings, a potential spillover of the Kiwira virus to humans must be considered. Full article
(This article belongs to the Special Issue Emerging Microbes, Infections and Spillovers)
Show Figures

Figure 1

12 pages, 3935 KiB  
Article
Geographic Distribution and Phylogeny of Soricine Shrew-Borne Seewis Virus and Altai Virus in Russia
by Liudmila N. Yashina, Sergey A. Abramov, Alexander V. Zhigalin, Natalia A. Smetannikova, Tamara A. Dupal, Anton V. Krivopalov, Fuka Kikuchi, Kae Senoo, Satoru Arai, Tetsuya Mizutani, Motoi Suzuki, Joseph A. Cook and Richard Yanagihara
Viruses 2021, 13(7), 1286; https://doi.org/10.3390/v13071286 - 1 Jul 2021
Cited by 11 | Viewed by 3865
Abstract
The discovery of genetically distinct hantaviruses (family Hantaviridae) in multiple species of shrews, moles and bats has revealed a complex evolutionary history involving cross-species transmission. Seewis virus (SWSV) is widely distributed throughout the geographic ranges of its soricid hosts, including the Eurasian [...] Read more.
The discovery of genetically distinct hantaviruses (family Hantaviridae) in multiple species of shrews, moles and bats has revealed a complex evolutionary history involving cross-species transmission. Seewis virus (SWSV) is widely distributed throughout the geographic ranges of its soricid hosts, including the Eurasian common shrew (Sorex araneus), tundra shrew (Sorex tundrensis) and Siberian large-toothed shrew (Sorex daphaenodon), suggesting host sharing. In addition, genetic variants of SWSV, previously named Artybash virus (ARTV) and Amga virus, have been detected in the Laxmann’s shrew (Sorex caecutiens). Here, we describe the geographic distribution and phylogeny of SWSV and Altai virus (ALTV) in Asian Russia. The complete genomic sequence analysis showed that ALTV, also harbored by the Eurasian common shrew, is a new hantavirus species, distantly related to SWSV. Moreover, Lena River virus (LENV) appears to be a distinct hantavirus species, harbored by Laxmann’s shrews and flat-skulled shrews (Sorex roboratus) in Eastern Siberia and far-eastern Russia. Another ALTV-related virus, which is more closely related to Camp Ripley virus from the United States, has been identified in the Eurasian least shrew (Sorex minutissimus) from far-eastern Russia. Two highly divergent viruses, ALTV and SWSV co-circulate among common shrews in Western Siberia, while LENV and the ARTV variant of SWSV co-circulate among Laxmann’s shrews in Eastern Siberia and far-eastern Russia. ALTV and ALTV-related viruses appear to belong to the Mobatvirus genus, while SWSV is a member of the Orthohantavirus genus. These findings suggest that ALTV and ALTV-related hantaviruses might have emerged from ancient cross-species transmission with subsequent diversification within Sorex shrews in Eurasia. Full article
(This article belongs to the Special Issue Hantavirus)
Show Figures

Figure 1

8 pages, 812 KiB  
Brief Report
Molecular Identification of a Novel Hantavirus in Malaysian Bronze Tube-Nosed Bats (Murina aenea)
by Brigitta Zana, Gábor Kemenesi, Dóra Buzás, Gábor Csorba, Tamás Görföl, Faisal Ali Anwarali Khan, Nurul Farah Diyana Ahmad Tahir, Safia Zeghbib, Mónika Madai, Henrietta Papp, Fanni Földes, Péter Urbán, Róbert Herczeg, Gábor Endre Tóth and Ferenc Jakab
Viruses 2019, 11(10), 887; https://doi.org/10.3390/v11100887 - 21 Sep 2019
Cited by 15 | Viewed by 5659
Abstract
In the past ten years, several novel hantaviruses were discovered in shrews, moles, and bats, suggesting the dispersal of hantaviruses in many animal taxa other than rodents during their evolution. Interestingly, the coevolutionary analyses of most recent studies have raised the possibility that [...] Read more.
In the past ten years, several novel hantaviruses were discovered in shrews, moles, and bats, suggesting the dispersal of hantaviruses in many animal taxa other than rodents during their evolution. Interestingly, the coevolutionary analyses of most recent studies have raised the possibility that nonrodents may have served as the primordial mammalian host and harboured the ancestors of rodent-borne hantaviruses as well. The aim of our study was to investigate the presence of hantaviruses in bat lung tissue homogenates originally collected for taxonomic purposes in Malaysia in 2015. Hantavirus-specific nested RT-PCR screening of 116 samples targeting the L segment of the virus has revealed the positivity of two lung tissue homogenates originating from two individuals, a female and a male of the Murina aenea bat species collected at the same site and sampling occasion. Nanopore sequencing of hantavirus positive samples resulted in partial genomic data from S, M, and L genome segments. The obtained results indicate molecular evidence for hantaviruses in the M. aenea bat species. Sequence analysis of the PCR amplicon and partial genome segments suggests that the identified virus may represent a novel species in the Mobatvirus genus within the Hantaviridae family. Our results provide additional genomic data to help extend our knowledge about the evolution of these viruses. Full article
(This article belongs to the Special Issue Hantaviruses)
Show Figures

Figure 1

15 pages, 3050 KiB  
Article
Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam
by Satoru Arai, Fuka Kikuchi, Saw Bawm, Nguyễn Trường Sơn, Kyaw San Lin, Vương Tân Tú, Keita Aoki, Kimiyuki Tsuchiya, Keiko Tanaka-Taya, Shigeru Morikawa, Kazunori Oishi and Richard Yanagihara
Viruses 2019, 11(3), 228; https://doi.org/10.3390/v11030228 - 7 Mar 2019
Cited by 19 | Viewed by 5827
Abstract
The discovery of highly divergent lineages of hantaviruses (family Hantaviridae) in shrews, moles, and bats of multiple species raises the possibility that non-rodent hosts may have played a significant role in their evolutionary history. To further investigate this prospect, total RNA was [...] Read more.
The discovery of highly divergent lineages of hantaviruses (family Hantaviridae) in shrews, moles, and bats of multiple species raises the possibility that non-rodent hosts may have played a significant role in their evolutionary history. To further investigate this prospect, total RNA was extracted from RNAlater®-preserved lung tissues of 277 bats (representing five families, 14 genera and 40 species), captured in Myanmar and Vietnam during 2013–2016. Hantavirus RNA was detected in two of 15 black-bearded tomb bats (Taphozous melanopogon) and two of 26 Pomona roundleaf bats (Hipposideros pomona) in Myanmar, and in three of six ashy leaf-nosed bats (Hipposideros cineraceus) in Vietnam. Pair-wise alignment and comparison of coding regions of the S, M, and L segments of hantaviruses from Taphozous and Hipposideros bats revealed high nucleotide and amino acid sequence similarities to prototype Láibīn virus (LAIV) and Xuân Sơn virus (XSV), respectively. Phylogenetic analyses, generated by maximum-likelihood and Bayesian methods, showed a geographic clustering of LAIV strains from China and Myanmar, but not of XSV strains from China and Vietnam. These findings confirm that the black-bearded tomb bat is the natural reservoir of LAIV, and that more than one species of Hipposideros bats can host XSV. Full article
(This article belongs to the Special Issue Viruses and Bats 2019)
Show Figures

Figure 1

Back to TopTop