Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Hantaviridae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4146 KiB  
Review
The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health
by Awad A. Shehata, Rokshana Parvin, Shadia Tasnim, Phelipe Magalhães Duarte, Alfonso J. Rodriguez-Morales and Shereen Basiouni
Viruses 2025, 17(6), 809; https://doi.org/10.3390/v17060809 - 2 Jun 2025
Viewed by 2165
Abstract
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that [...] Read more.
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that live in close proximity to humans. As of April 2025, approximately 15,205 rodent-associated viruses have been identified across 32 viral families. Among these, key zoonotic agents belong to the Arenaviridae, Hantaviridae, Picornaviridae, Coronaviridae, and Poxviridae families. Due to their adaptability to both urban and rural environments, rodents serve as efficient vectors across diverse ecological landscapes. Environmental and anthropogenic factors, such as climate change, urbanization, deforestation, and emerging pathogens, are increasingly linked to rising outbreaks of rodent-borne diseases. This review synthesizes current knowledge on rodent-borne viral zoonoses, focusing on their taxonomy, biology, host associations, transmission dynamics, clinical impact, and public health significance. It underscores the critical need for early detection, effective surveillance, and integrated control strategies. A multidisciplinary approach, including enhanced vector control, improved environmental sanitation, and targeted public education, is essential for mitigating the growing threat of rodent-borne zoonoses to global health. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2025)
Show Figures

Figure 1

13 pages, 15467 KiB  
Article
Evaluating Neutralizing Antibodies in Hantavirus-Infected Patients Using Authentic Virus and Recombinant Vesicular Stomatitis Virus Systems
by Punya Shrivastava-Ranjan, Jamie A. Kelly, Laura K. McMullan, Deborah Cannon, Laura Morgan, Payel Chatterjee, Shilpi Jain, Joel M. Montgomery, Mike Flint, César G. Albariño and Christina F. Spiropoulou
Viruses 2025, 17(5), 723; https://doi.org/10.3390/v17050723 - 19 May 2025
Viewed by 565
Abstract
Hantaviruses, including the Sin Nombre virus (SNV) and Andes virus (ANDV), are associated with severe global health risks, causing high mortality rates in hantavirus pulmonary syndrome (HPS) patients. Neutralizing antibodies are essential for virus clearance and survival, making neutralization assays critical for understanding [...] Read more.
Hantaviruses, including the Sin Nombre virus (SNV) and Andes virus (ANDV), are associated with severe global health risks, causing high mortality rates in hantavirus pulmonary syndrome (HPS) patients. Neutralizing antibodies are essential for virus clearance and survival, making neutralization assays critical for understanding immunity and evaluating therapeutic strategies. In this study, we developed a recombinant vesicular stomatitis virus (VSV)-based surrogate system expressing SNV and ANDV glycoproteins (GPCs), enabling neutralization studies under biosafety level 2 conditions. The neutralization titers obtained with the VSV-based system closely matched the findings from authentic hantavirus assays performed under biosafety level 3 conditions, confirming its potential as a useful tool for determining immune responses and advancing hantavirus research. Full article
(This article belongs to the Special Issue Hantavirus 2024)
Show Figures

Figure 1

24 pages, 357 KiB  
Review
Understanding Viral Haemorrhagic Fevers: Virus Diversity, Vector Ecology, and Public Health Strategies
by Roger Hewson
Pathogens 2024, 13(10), 909; https://doi.org/10.3390/pathogens13100909 - 18 Oct 2024
Cited by 10 | Viewed by 4092
Abstract
Viral haemorrhagic fevers encompass a diverse group of severe, often life-threatening illnesses caused by viruses from multiple families, including Arenaviridae, Filoviridae, Flaviviridae, Hantaviridae, Nairoviridae, Peribunyaviridae, and Phenuiviridae. Characterised by fever and haemorrhagic symptoms, these diseases challenge public health [...] Read more.
Viral haemorrhagic fevers encompass a diverse group of severe, often life-threatening illnesses caused by viruses from multiple families, including Arenaviridae, Filoviridae, Flaviviridae, Hantaviridae, Nairoviridae, Peribunyaviridae, and Phenuiviridae. Characterised by fever and haemorrhagic symptoms, these diseases challenge public health systems by overwhelming healthcare facilities, complicating diagnostic processes, and requiring extensive resources for containment and treatment, especially in resource-limited settings. This discussion explores the intricate relationships between VHFs and their transmission vectors—both animal and arthropod—and examines the impact of ecological and geographic factors on disease spread. The primary transmission of VHFs typically occurs through direct contact with infected animals or via bites from haematophagous arthropods, facilitating zoonotic and, at times, human-to-human transmission. With an emphasis on the role of diverse wildlife, domesticated animals, and vectors such as mosquitoes and ticks in the epidemiology of VHFs, there is a recognised need for robust surveillance and strategic public health responses to manage outbreaks. This review discusses the necessity of interdisciplinary approaches that integrate virology, ecology, and public health to enhance diagnostic capabilities, develop vaccines and antivirals, and improve outbreak interventions. Exploring the ecological and biological dynamics of VHFs will help bolster a deeper understanding of these emerging viruses and underpin preparation for future outbreaks. The importance of enhanced global cooperation, continuous research, and collaboration to mitigate the public health threats posed by these complex infections is a central theme, serving as a foundational strategy to reinforce worldwide preparedness and response efforts. Future directions include addressing gaps in vaccine development and tailoring public health strategies to the unique challenges of managing VHFs, such as the rapid mutation rates of viruses, the need for cold chain logistics for vaccine distribution, and socio-economic barriers to healthcare access, in order to ensure readiness for and effective response to emerging threats worldwide. Full article
(This article belongs to the Special Issue Microbial Pathogenesis and Emerging Infections)
25 pages, 1334 KiB  
Review
Viruses Identified in Shrews (Soricidae) and Their Biomedical Significance
by Huan-Yu Gong, Rui-Xu Chen, Su-Mei Tan, Xiu Wang, Ji-Ming Chen, Yuan-Long Zhang and Ming Liao
Viruses 2024, 16(9), 1441; https://doi.org/10.3390/v16091441 - 10 Sep 2024
Cited by 2 | Viewed by 2413
Abstract
Shrews (Soricidae) are common small wild mammals. Some species of shrews, such as Asian house shrews (Suncus murinus), have a significant overlap in their habitats with humans and domestic animals. Currently, over 190 species of viruses in 32 families, [...] Read more.
Shrews (Soricidae) are common small wild mammals. Some species of shrews, such as Asian house shrews (Suncus murinus), have a significant overlap in their habitats with humans and domestic animals. Currently, over 190 species of viruses in 32 families, including Adenoviridae, Arenaviridae, Arteriviridae, Astroviridae, Anelloviridae, Bornaviridae, Caliciviridae, Chuviridae, Coronaviridae, Filoviridae, Flaviviridae, Hantaviridae, Hepadnaviridae, Hepeviridae, Nairoviridae, Nodaviridae, Orthoherpesviridae, Orthomyxoviridae, Paramyxoviridae, Parvoviridae, Phenuiviridae, Picobirnaviridae, Picornaviridae, Polyomaviridae, Poxviridae, Rhabdoviridae, Sedoreoviridae, Spinareoviridae, and three unclassified families, have been identified in shrews. Diverse shrew viruses, such as Borna disease virus 1, Langya virus, and severe fever with thrombocytopenia syndrome virus, cause diseases in humans and/or domestic animals, posing significant threats to public health and animal health. This review compiled fundamental information about shrews and provided a comprehensive summary of the viruses that have been detected in shrews, with the aim of facilitating a deep understanding of shrews and the diversity, epidemiology, and risks of their viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 1278 KiB  
Article
Hantavirus Pulmonary Syndrome Outbreak Anticipation by a Rapid Synchronous Increase in Rodent Abundance in the Northwestern Argentina Endemic Region: Towards an Early Warning System for Disease Based on Climate and Rodent Surveillance Data
by Ignacio Ferro, Walter Lopez, Flavia Cassinelli, Sara Aguirre, Griet A. E. Cuyckens, Sebastián Kehl, Daira Abán-Moreyra, Paola Castillo, Carla Bellomo, José Gil and Valeria P. Martinez
Pathogens 2024, 13(9), 753; https://doi.org/10.3390/pathogens13090753 - 2 Sep 2024
Cited by 3 | Viewed by 2769
Abstract
Hantavirus pulmonary syndrome (HPS) is an American emerging disease caused by the rodent-borne virus genus Orthohantavirus (Family: Hantaviridae: Order: Elliovirales Class: Bunyaviricetes). In Argentina, almost half of the HPS infections occur in the northwestern endemic region. In this study, we monitored [...] Read more.
Hantavirus pulmonary syndrome (HPS) is an American emerging disease caused by the rodent-borne virus genus Orthohantavirus (Family: Hantaviridae: Order: Elliovirales Class: Bunyaviricetes). In Argentina, almost half of the HPS infections occur in the northwestern endemic region. In this study, we monitored rodent abundance during 2022 and 2023 in three sites with different sampling methods (removal trapping, live trapping and hunted rodents by domestic cats) to evaluate their relationship with human infections. We found a similar pattern of variation in rodent abundance across time, and particularly a synchronous rise of rodent abundance that anticipated an HPS outbreak in 2023. Our dynamic regression models revealed a positive relationship between HPS cases and rodent abundance with a three-month lag, as well as rainfall with an eight-month lag. Our results provide a framework for the planning and implementation of public health prevention campaigns based on climatology and rodent monitoring. Domestic cats bringing rodents into houses can be an overlooked risk factor, particularly if viral shedding of infected rodents is magnified by stress. HPS is a disease of public health concern due to its high mortality rate, the lack of a specific therapeutic treatment and no vaccine. Thus, prevention of infections is of the utmost importance. Full article
(This article belongs to the Special Issue Bunyavirales Infections)
Show Figures

Figure 1

32 pages, 2115 KiB  
Review
The Adaptive Immune Response against Bunyavirales
by Reem Alatrash and Bobby Brooke Herrera
Viruses 2024, 16(3), 483; https://doi.org/10.3390/v16030483 - 21 Mar 2024
Cited by 4 | Viewed by 3296
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection [...] Read more.
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines. Full article
(This article belongs to the Special Issue RNA Viruses and Antibody Response, 2nd Edition)
Show Figures

Figure 1

18 pages, 2689 KiB  
Article
Modeling the Immune Response for Pathogenic and Nonpathogenic Orthohantavirus Infections in Human Lung Microvasculature Endothelial Cells
by Evan P. Williams, Aadrita Nandi, Victoria Nam, Linda J. S. Allen, A. Alexandre Trindade, Michele M. Kosiewicz and Colleen B. Jonsson
Viruses 2023, 15(9), 1806; https://doi.org/10.3390/v15091806 - 24 Aug 2023
Viewed by 1751
Abstract
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles [...] Read more.
Hantaviruses, genus Orthohantavirus, family Hantaviridae, order Bunyavirales, are negative-sense, single-stranded, tri-segmented RNA viruses that persistently infect rodents, shrews, and moles. Of these, only certain virus species harbored by rodents are pathogenic to humans. Infection begins with inhalation of virus particles into the lung and trafficking to the lung microvascular endothelial cells (LMVEC). The reason why certain rodent-borne hantavirus species are pathogenic has long been hypothesized to be related to their ability to downregulate and dysregulate the immune response as well as increase vascular permeability of infected endothelial cells. We set out to study the temporal dynamics of host immune response modulation in primary human LMVECs following infection by Prospect Hill (nonpathogenic), Andes (pathogenic), and Hantaan (pathogenic) viruses. We measured the level of RNA transcripts for genes representing antiviral, proinflammatory, anti-inflammatory, and metabolic pathways from 12 to 72 h with time points every 12 h. Gene expression analysis in conjunction with mathematical modeling revealed a similar profile for all three viruses in terms of upregulated genes that partake in interferon signaling (TLR3, IRF7, IFNB1), host immune cell recruitment (CXCL10, CXCL11, and CCL5), and host immune response modulation (IDO1). We examined secreted protein levels of IFN-β, CXCL10, CXCL11, CCL5, and IDO in two male and two female primary HLMVEC donors at 48 and 60 h post infection. All three viruses induced similar levels of CCL5, CXCL10, and CXCL11 within a particular donor, and the levels were similar in three of the four donors. All three viruses induced different protein secretion levels for both IFN-β and IDO and secretion levels differed between donors. In conclusion, we show that there was no difference in the transcriptional profiles of key genes in primary HLMVECs following infection by pathogenic and nonpathogenic hantaviruses, with protein secretion levels being more donor-specific than virus-specific. Full article
Show Figures

Figure 1

16 pages, 3527 KiB  
Review
Zoonotic Hantaviridae with Global Public Health Significance
by Rui-Xu Chen, Huan-Yu Gong, Xiu Wang, Ming-Hui Sun, Yu-Fei Ji, Su-Mei Tan, Ji-Ming Chen, Jian-Wei Shao and Ming Liao
Viruses 2023, 15(8), 1705; https://doi.org/10.3390/v15081705 - 8 Aug 2023
Cited by 19 | Viewed by 4398
Abstract
Hantaviridae currently encompasses seven genera and 53 species. Multiple hantaviruses such as Hantaan virus, Seoul virus, Dobrava-Belgrade virus, Puumala virus, Andes virus, and Sin Nombre virus are highly pathogenic to humans. They cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome [...] Read more.
Hantaviridae currently encompasses seven genera and 53 species. Multiple hantaviruses such as Hantaan virus, Seoul virus, Dobrava-Belgrade virus, Puumala virus, Andes virus, and Sin Nombre virus are highly pathogenic to humans. They cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome or hantavirus pulmonary syndrome (HCPS/HPS) in many countries. Some hantaviruses infect wild or domestic animals without causing severe symptoms. Rodents, shrews, and bats are reservoirs of various mammalian hantaviruses. Recent years have witnessed significant advancements in the study of hantaviruses including genomics, taxonomy, evolution, replication, transmission, pathogenicity, control, and patient treatment. Additionally, new hantaviruses infecting bats, rodents, shrews, amphibians, and fish have been identified. This review compiles these advancements to aid researchers and the public in better recognizing this zoonotic virus family with global public health significance. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 1594 KiB  
Article
Multiple Lineages of Hantaviruses Harbored by the Iberian Mole (Talpa occidentalis) in Spain
by Se Hun Gu, Marcos Miñarro, Carlos Feliu, Jean-Pierre Hugot, Naomi L. Forrester, Scott C. Weaver and Richard Yanagihara
Viruses 2023, 15(6), 1313; https://doi.org/10.3390/v15061313 - 2 Jun 2023
Cited by 6 | Viewed by 2814
Abstract
The recent detection of both Nova virus (NVAV) and Bruges virus (BRGV) in European moles (Talpa europaea) in Belgium and Germany prompted a search for related hantaviruses in the Iberian mole (Talpa occidentalis). RNAlater®-preserved lung tissue from [...] Read more.
The recent detection of both Nova virus (NVAV) and Bruges virus (BRGV) in European moles (Talpa europaea) in Belgium and Germany prompted a search for related hantaviruses in the Iberian mole (Talpa occidentalis). RNAlater®-preserved lung tissue from 106 Iberian moles, collected during January 2011 to June 2014 in Asturias, Spain, were analyzed for hantavirus RNA by nested/hemi-nested RT-PCR. Pairwise alignment and comparison of partial L-segment sequences, detected in 11 Iberian moles from four parishes, indicated the circulation of genetically distinct hantaviruses. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, demonstrated three distinct hantaviruses in Iberian moles: NVAV, BRGV, and a new hantavirus, designated Asturias virus (ASTV). Of the cDNA from seven infected moles processed for next generation sequencing using Illumina HiSeq1500, one produced viable contigs, spanning the S, M and L segments of ASTV. The original view that each hantavirus species is harbored by a single small-mammal host species is now known to be invalid. Host-switching or cross-species transmission events, as well as reassortment, have shaped the complex evolutionary history and phylogeography of hantaviruses such that some hantavirus species are hosted by multiple reservoir species, and conversely, some host species harbor more than one hantavirus species. Full article
Show Figures

Figure 1

13 pages, 1954 KiB  
Article
Phylogeny of Shrew- and Mole-Borne Hantaviruses in Poland and Ukraine
by Fuka Kikuchi, Satoru Arai, Janusz Hejduk, Ai Hayashi, Janusz Markowski, Marcin Markowski, Leszek Rychlik, Vasyl Khodzinskyi, Hajime Kamiya, Tetsuya Mizutani, Motoi Suzuki, Beata Sikorska, Paweł P. Liberski and Richard Yanagihara
Viruses 2023, 15(4), 881; https://doi.org/10.3390/v15040881 - 29 Mar 2023
Cited by 2 | Viewed by 2318
Abstract
Earlier, we demonstrated the co-circulation of genetically distinct non-rodent-borne hantaviruses, including Boginia virus (BOGV) in the Eurasian water shrew (Neomys fodiens), Seewis virus (SWSV) in the Eurasian common shrew (Sorex araneus) and Nova virus (NVAV) in the European mole [...] Read more.
Earlier, we demonstrated the co-circulation of genetically distinct non-rodent-borne hantaviruses, including Boginia virus (BOGV) in the Eurasian water shrew (Neomys fodiens), Seewis virus (SWSV) in the Eurasian common shrew (Sorex araneus) and Nova virus (NVAV) in the European mole (Talpa europaea), in central Poland. To further investigate the phylogeny of hantaviruses harbored by soricid and talpid reservoir hosts, we analyzed RNAlater®-preserved lung tissues from 320 shrews and 26 moles, both captured during 1990–2017 across Poland, and 10 European moles from Ukraine for hantavirus RNA through RT-PCR and DNA sequencing. SWSV and Altai virus (ALTV) were detected in Sorex araneus and Sorex minutus in Boginia and the Białowieża Forest, respectively, and NVAV was detected in Talpa europaea in Huta Dłutowska, Poland, and in Lviv, Ukraine. Phylogenetic analyses using maximum-likelihood and Bayesian methods showed geography-specific lineages of SWSV in Poland and elsewhere in Eurasia and of NVAV in Poland and Ukraine. The ATLV strain in Sorex minutus from the Białowieża Forest on the Polish–Belarusian border was distantly related to the ATLV strain previously reported in Sorex minutus from Chmiel in southeastern Poland. Overall, the gene phylogenies found support long-standing host-specific adaptation. Full article
(This article belongs to the Special Issue State-of-the-Art Animal Virus Research in Poland II)
Show Figures

Figure 1

12 pages, 446 KiB  
Commentary
Pending Reorganization of Hantaviridae to Include Only Completely Sequenced Viruses: A Call to Action
by Jens H. Kuhn, Steven B. Bradfute, Charles H. Calisher, Boris Klempa, Jonas Klingström, Lies Laenen, Gustavo Palacios, Connie S. Schmaljohn, Nicole D. Tischler and Piet Maes
Viruses 2023, 15(3), 660; https://doi.org/10.3390/v15030660 - 28 Feb 2023
Cited by 15 | Viewed by 3332
Abstract
The official classification of newly discovered or long-known unassigned viruses by the International Committee on Taxonomy of Viruses (ICTV) requires the deposition of coding-complete or -near-complete virus genome sequences in GenBank to fulfill a requirement of the taxonomic proposal (TaxoProp) process. However, this [...] Read more.
The official classification of newly discovered or long-known unassigned viruses by the International Committee on Taxonomy of Viruses (ICTV) requires the deposition of coding-complete or -near-complete virus genome sequences in GenBank to fulfill a requirement of the taxonomic proposal (TaxoProp) process. However, this requirement is fairly new; thus, genomic sequence information is fragmented or absent for many already-classified viruses. As a result, taxon-wide modern phylogenetic analyses are often challenging, if not impossible. This problem is particularly eminent among viruses with segmented genomes, such as bunyavirals, which were frequently classified solely based on single-segment sequence information. To solve this issue for one bunyaviral family, Hantaviridae, we call on the community to provide additional sequence information for incompletely sequenced classified viruses by mid-June 2023. Such sequence information may be sufficient to prevent their possible declassification during the ongoing efforts to establish a coherent, consistent, and evolution-based hantavirid taxonomy. Full article
12 pages, 3572 KiB  
Review
A Brief History of Bunyaviral Family Hantaviridae
by Jens H. Kuhn and Connie S. Schmaljohn
Diseases 2023, 11(1), 38; https://doi.org/10.3390/diseases11010038 - 28 Feb 2023
Cited by 30 | Viewed by 4229
Abstract
The discovery of Hantaan virus as an etiologic agent of hemorrhagic fever with renal syndrome in South Korea in 1978 led to identification of related pathogenic and nonpathogenic rodent-borne viruses in Asia and Europe. Their global distribution was recognized in 1993 after connecting [...] Read more.
The discovery of Hantaan virus as an etiologic agent of hemorrhagic fever with renal syndrome in South Korea in 1978 led to identification of related pathogenic and nonpathogenic rodent-borne viruses in Asia and Europe. Their global distribution was recognized in 1993 after connecting newly discovered relatives of these viruses to hantavirus pulmonary syndrome in the Americas. The 1971 description of the shrew-infecting Hantaan-virus-like Thottapalayam virus was long considered an anomaly. Today, this virus and many others that infect eulipotyphlans, bats, fish, rodents, and reptiles are classified among several genera in the continuously expanding family Hantaviridae. Full article
9 pages, 1028 KiB  
Article
Occurrence of Rickettsia spp., Hantaviridae, Bartonella spp. and Leptospira spp. in European Moles (Talpa europaea) from the Netherlands
by Tryntsje Cuperus, Ankje de Vries, Ryanne I. Jaarsma, Hein Sprong and Miriam Maas
Microorganisms 2023, 11(1), 41; https://doi.org/10.3390/microorganisms11010041 - 22 Dec 2022
Cited by 1 | Viewed by 2642
Abstract
The European mole (Talpa europaea) has a widespread distribution throughout Europe. However, little is known about the presence of zoonotic pathogens in European moles. We therefore tested 180 moles from the middle and the south of the Netherlands by (q)PCR for [...] Read more.
The European mole (Talpa europaea) has a widespread distribution throughout Europe. However, little is known about the presence of zoonotic pathogens in European moles. We therefore tested 180 moles from the middle and the south of the Netherlands by (q)PCR for the presence of multiple (tick-borne) zoonotic pathogens. Spotted fever Rickettsia was found in one (0.6%), Leptospira spp. in three (1.7%), Bartonella spp. in 69 (38.3%) and Hantaviridae in 89 (49.4%) of the 180 moles. Infections with Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis, Borrelia spp., Spiroplasma spp. and Francisella tularensis were not found. In addition, in a subset of 35 moles no antibodies against Tick-borne encephalitis virus were found. The obtained sequences of Bartonella spp. were closely related to Bartonella spp. sequences from moles in Spain and Hungary. The Hantaviridae were identified as the mole-borne Nova virus, with high sequence similarity to sequences from other European countries, and Bruges virus. Though the zoonotic risk from moles appears limited, our results indicate that these animals do play a role in multiple host-pathogen cycles. Full article
(This article belongs to the Special Issue Advanced Research on Ticks and Tick-Borne Diseases)
Show Figures

Figure 1

10 pages, 1605 KiB  
Article
Kiwira Virus, a Newfound Hantavirus Discovered in Free-tailed Bats (Molossidae) in East and Central Africa
by Sabrina Weiss, Lwitiho E. Sudi, Ariane Düx, Chacha D. Mangu, Nyanda Elias Ntinginya, Gabriel M. Shirima, Sophie Köndgen, Grit Schubert, Peter T. Witkowski, Jean-Jacques Muyembe, Steve Ahuka, Boris Klempa, Fabian H. Leendertz and Detlev H. Krüger
Viruses 2022, 14(11), 2368; https://doi.org/10.3390/v14112368 - 27 Oct 2022
Cited by 11 | Viewed by 4879
Abstract
A novel hantavirus, named Kiwira virus, was molecularly detected in six Angolan free-tailed bats (Mops condylurus, family Molossidae) captured in Tanzania and in one free-tailed bat in the Democratic Republic of Congo. Hantavirus RNA was found in different organs, with the [...] Read more.
A novel hantavirus, named Kiwira virus, was molecularly detected in six Angolan free-tailed bats (Mops condylurus, family Molossidae) captured in Tanzania and in one free-tailed bat in the Democratic Republic of Congo. Hantavirus RNA was found in different organs, with the highest loads in the spleen. Nucleotide sequences of large parts of the genomic S and L segments were determined by in-solution hybridisation capture and high throughput sequencing. Phylogenetic analyses placed Kiwira virus into the genus Mobatvirus of the family Hantaviridae, with the bat-infecting Quezon virus and Robina virus as closest relatives. The detection of several infected individuals in two African countries, including animals with systemic hantavirus infection, provides evidence of active replication and a stable circulation of Kiwira virus in M. condylurus bats and points to this species as a natural host. Since the M. condylurus home range covers large regions of Sub-Saharan Africa and the species is known to roost inside and around human dwellings, a potential spillover of the Kiwira virus to humans must be considered. Full article
(This article belongs to the Special Issue Emerging Microbes, Infections and Spillovers)
Show Figures

Figure 1

25 pages, 9356 KiB  
Article
Design of a Multi-Epitopes Vaccine against Hantaviruses: An Immunoinformatics and Molecular Modelling Approach
by Saba Ismail, Sumra Wajid Abbasi, Maha Yousaf, Sajjad Ahmad, Khalid Muhammad and Yasir Waheed
Vaccines 2022, 10(3), 378; https://doi.org/10.3390/vaccines10030378 - 28 Feb 2022
Cited by 28 | Viewed by 4964
Abstract
Hantaviruses are negative-sense, enveloped, single-stranded RNA viruses of the family Hantaviridae. In recent years, rodent-borne hantaviruses have emerged as novel zoonotic viruses posing a substantial health issue and socioeconomic burden. In the current research, a reverse vaccinology approach was applied to design a [...] Read more.
Hantaviruses are negative-sense, enveloped, single-stranded RNA viruses of the family Hantaviridae. In recent years, rodent-borne hantaviruses have emerged as novel zoonotic viruses posing a substantial health issue and socioeconomic burden. In the current research, a reverse vaccinology approach was applied to design a multi-epitope-based vaccine against hantavirus. A set of 340 experimentally reported epitopes were retrieved from Virus Pathogen Database and Analysis Resource (ViPR) and subjected to different analyses such as antigenicity, allergenicity, solubility, IFN gamma, toxicity, and virulent checks. Finally, 10 epitopes which cleared all the filters used were linked with each other through specific GPGPG linkers to construct a multi-antigenic epitope vaccine. The designed vaccine was then joined to three different adjuvants—TLR4-agonist adjuvant, β-defensin, and 50S ribosomal protein L7/L12—using an EAAAK linker to boost up immune-stimulating responses and check the potency of vaccine with each adjuvant. The designed vaccine structures were modelled and subjected to error refinement and disulphide engineering to enhance their stability. To understand the vaccine binding affinity with immune cell receptors, molecular docking was performed between the designed vaccines and TLR4; the docked complex with a low level of global energy was then subjected to molecular dynamics simulations to validate the docking results and dynamic behaviour. The docking binding energy of vaccines with TLR4 is −29.63 kcal/mol (TLR4-agonist), −3.41 kcal/mol (β-defensin), and −11.03 kcal/mol (50S ribosomal protein L7/L12). The systems dynamics revealed all three systems to be highly stable with a root-mean-square deviation (RMSD) value within 3 Å. To test docking predictions and determine dominant interaction energies, binding free energies of vaccine(s)–TLR4 complexes were calculated. The net binding energy of the systems was as follows: TLR4-agonist vaccine with TLR4 (MM–GBSA, −1628.47 kcal/mol and MM–PBSA, −37.75 kcal/mol); 50S ribosomal protein L7/L12 vaccine with TLR4 complex (MM–GBSA, −194.62 kcal/mol and MM–PBSA, −150.67 kcal/mol); β-defensin vaccine with TLR4 complex (MM–GBSA, −9.80 kcal/mol and MM–PBSA, −42.34 kcal/mol). Finally, these findings may aid experimental vaccinologists in developing a very potent hantavirus vaccine. Full article
Show Figures

Figure 1

Back to TopTop