Ubiquitin-Conjugating Enzyme E2 E Inhibits the Accumulation of Rice Stripe Virus in Laodelphax striatellus (Fallén)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Insects
2.2. Illumina Sequencing
2.3. Identification and Phylogenetic Analyses of LstrE2 Genes
2.4. Cloning and Structural Analysis of LstrE2 Genes
2.5. Real-Time RT-qPCR
2.6. Western Blotting
2.7. RNA Interference (RNAi)
2.8. Immunofluorescence Microscopy
2.9. Yeast Two-Hybrid Assays
2.10. GST Pull-Down Assay
3. Results
3.1. Identification and Classification of LstrE2s
3.2. Cloning and Sequence Analysis of Four LstrE2s
3.3. Expression Analysis of the Four LstrE2s
3.4. Rice Stripe Virus Increases LstrE2s Expression in Small Brown Planthopper Adults
3.5. Repression of LstrE2 E via RNAi Increases RSV Load in Small Brown Planthopper
3.6. LstrE2 E Does Not Directly Interact with RSV Proteins
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Goldstein, G.; Scheid, M.; Hammerling, U.; Schlesinger, D.H.; Niall, H.D.; Boyse, E.A. Isolation of a polypeptide that has lymphocyte differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 1975, 72, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swatek, K.N.; Komander, D. Ubiquitin modifications. Cell Res. 2016, 26, 399–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribet, D.; Cossart, P. Ubiquitin, SUMO, and NEDD8: Key targets of bacterial pathogens. Trends Cell Biol. 2018, 28, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Hershko, A.; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 1998, 67, 425–479. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A.; Orian, A.; Schwartz, A.L. Ubiquitin-mediated proteolysis: Biological regulation via destruction. Bioessays 2000, 22, 442–451. [Google Scholar] [CrossRef]
- Glickman, M.H.; Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol. Rev. 2002, 82, 373–428. [Google Scholar] [CrossRef]
- Weissman, A.M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2001, 2, 169–178. [Google Scholar] [CrossRef]
- Berniervillamor, V.; Sampson, D.A.; Matunis, M.J.; Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 2002, 108, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Brzovic, P.S.; Klevit, R.E. Ubiquitin transfer from the E2 perspective: Why is UbcH5 so promiscuous? Cell Cycle 2006, 5, 2867–2873. [Google Scholar] [CrossRef] [Green Version]
- Walczak, H.; Iwai, K.; Dikic, I. Generation and physiological roles of linear ubiquitin chains. BMC Biol. 2012, 10, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Crowe, E.; Stevens, T.A.; Candido, E.P.M. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: Ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol. 2001, 3, research0002.1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaide-Loridan, C.; Jupin, I. Ubiquitin and plant viruses, let’s play together! Plant. Physiol. 2012, 160, 72–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H. Interplay between the virus and the ubiquitin-proteasome system: Molecular mechanism of viral pathogenesis. Curr. Opin. Virol. 2016, 17, 1–10. [Google Scholar] [CrossRef]
- Seth, R.B.; Sun, L.; Ea, C.K.; Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005, 122, 669–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, W.; Xu, M.; Liu, S.; Sun, L.; Chen, Z.J. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol. Cell 2009, 36, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.-J.; Wang, S.; Zhao, X.-F.; Yu, X.; Wang, J. Enzyme E2 from chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins. J. Virol. 2011, 85, 8069–8079. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Bao, M.; Zhou, X. A plant kinase plays roles in defense response against geminivirus by phosphorylation of a viral pathogenesis protein. Plant Signal. Behav. 2012, 7, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Hu, T.; Bao, M.; Cao, L.; Zhang, H.; Song, F.; Xie, Q.; Zhou, X. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded βC1. Mol. Plant 2016, 9, 911–925. [Google Scholar] [CrossRef] [Green Version]
- Rangasamy, D.; Wilson, V.G. Bovine papillomavirus E1 protein is sumoylated by the host cell Ubc9 protein. J. Biol. Chem. 2000, 275, 30487–30495. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Barajas, D.; Panavas, T.; Herbst, D.A.; Nagy, P.D. Cdc34p Ubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein. J. Virol. 2008, 82, 6911–6926. [Google Scholar] [CrossRef] [Green Version]
- Barajas, D.; Jiang, Y.; Nagy, P.D.; Nelson, J.A. A unique role for the host ESCRT proteins in replication of tomato bushy stunt virus. Plos. Pathog. 2009, 5, e1000705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barajas, D.; Nagy, P.D. Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein. Virology 2010, 397, 358–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imura, Y.; Molho, M.; Chuang, C.; Nagy, P.D. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants. Virology 2015, 484, 265–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eini, O.; Dogra, S.; Selth, L.A.; Dry, I.B.; Randles, J.W.; Rezaian, M.A. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA β satellite. Mol. Plant-Microbe Interact. 2009, 22, 737–746. [Google Scholar] [CrossRef]
- Castillo, A.G.; Kong, L.J.; Hanley-Bowdoin, L.; Bejarano, E.R. Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 2004, 78, 2758–2769. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Durán, M.A.; Dallas, M.B.; Ascencio-Ibanez, J.T.; Reyes, M.I.; Arroyomateos, M.; Ruizalbert, J.; Hanleybowdoin, L.; Bejarano, E.R. Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J. Virol. 2011, 85, 9789–9800. [Google Scholar] [CrossRef] [Green Version]
- Xiong, R.; Wang, A. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of turnip mosaic virus, is required for viral infection. J. Virol. 2013, 87, 4704–4715. [Google Scholar] [CrossRef] [Green Version]
- Hibino, H. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 1996, 34, 249–274. [Google Scholar] [CrossRef]
- Falk, B.W.; Tsai, J.H. Biology and molecular biology of viruses in the genus tenuivirus. Annu. Rev. Phytopathol. 1998, 36, 139–163. [Google Scholar] [CrossRef]
- Kakutani, T.; Hayano, Y.; Hayashi, T.; Minobe, Y. Ambisense segment 3 of rice stripe virus: The first instance of a virus containing two ambisense segments. J. Gen. Virol. 1991, 72, 465–468. [Google Scholar] [CrossRef]
- Takahashi, M.; Toriyama, S.; Hamamatsu, C.; Ishihama, A. Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. J. Gen. Virol. 1993, 74, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, B.C.; Haenni, A.L. Molecular biology of tenuiviruses, a remarkable group of plant viruses. J. Gen. Virol. 1994, 75, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Toriyama, S.; Takahashi, M.; Sano, Y.; Shimizu, T.; Ishihama, A. Nucleotide sequence of RNA 1, the largest genomic segment of rice stripe virus, the prototype of the tenuiviruses. J. Gen. Virol. 1994, 75, 3569–3579. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Wu, J.; Zhou, Y.; Zhou, X. Identification of a movement protein of the tenuivirus rice stripe virus. J. Virol. 2008, 82, 12304–12311. [Google Scholar] [CrossRef] [Green Version]
- Xiong, R.; Wu, J.; Zhou, Y.; Zhou, X. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology 2009, 387, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Hayakawa, T.; Toriyama, S. Complete nucleotide sequence of RNA 4 of rice stripe virus isolate T, and comparison with another isolate and with maize stripe. J. Gen. Virol. 2018, 73, 1309–1312. [Google Scholar] [CrossRef]
- Wu, W.; Zheng, L.; Chen, H.; Jia, D.; Li, F.; Wei, T. Nonstructural protein NS4 of rice stripe virus plays a critical role in viral spread in the body of vector insects. PLoS ONE 2014, 9, e88636. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, J.; Fu, S.; Li, C.; Zhu, Z.; Zhou, X. Rice stripe tenuivirus nonstructural protein 3 hijacks the 26S proteasome of the small brown planthopper via direct interaction with regulatory particle non-ATPase subunit 3. J. Virol. 2015, 89, 4296–4310. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Hu, J.; Fu, M.L.; Jin, P.; Zhang, Y.; Xiang, Y.; Li, Y.; Ma, F. Identification and characterization of a TLR13 gene homologue from Laodelphax striatellus involved in the immune response induced by rice stripe virus. J. Integr. Agric. 2020, 19, 183–192. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Xiang, Y.; Zhang, Y.; Chen, D.; Liu, F. Identification and comparative expression profiles of chemosensory genes in major chemoreception organs of a notorious pests, Laodelphax striatellus. Comp. Biochem. Phys. D 2020, 33, 100646. [Google Scholar] [CrossRef]
- Parkhomchuk, D.; Borodina, T.; Amstislavskiy, V.; Banaru, M.; Hallen, L.; Krobitsch, S.; Lehrach, H.; Soldatov, A. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009, 37, e123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Jiang, F.; Wang, X.; Yang, P.; Bao, Y.; Zhao, W.; Wang, W.; Lu, H.; Wang, Q.; Cui, N.; et al. Genome sequence of the small brown planthopper, Laodelphax striatellus. Gigascience 2017, 6, gix109. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef] [PubMed]
- Michelle, C.; Vourc’H, P.; Mignon, L.; Andres, C.R. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J. Mol. Evol. 2009, 68, 616–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seufert, W.; Jentsch, S. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 1990, 9, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Wijk, S.J.L.; Timmers, H.T.M. The family of ubiquitin-conjugating enzymes (E2s): Deciding between life and death of proteins. FASEB J. 2010, 24, 981–993. [Google Scholar] [CrossRef]
- Bartke, T.; Pohl, C.; Pyrowolakis, G.; Jentsch, S. Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell 2004, 14, 801–811. [Google Scholar] [CrossRef]
- Jue, D.; Sang, X.; Lu, S.; Dong, C.; Zhao, Q.; Chen, H.; Jia, L. Genome-wide identification, phylogenetic and expression analyses of the ubiquitin- conjugating enzyme gene family in Maize. PLoS ONE 2015, 10, e0143488. [Google Scholar] [CrossRef]
- Bae, H.; Kim, W.T. Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases. Biochem. Biophys Res. Commun. 2015, 444, 575–580. [Google Scholar] [CrossRef]
- Oh, K.-J.; Kalinina, A.; Wang, J.; Nakayama, K.; Nakayama, K.I.; Bagchi, S. The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase. J. Virol. 2004, 78, 5338–5346. [Google Scholar] [CrossRef] [Green Version]
Gene Names | Reference Number | BLASTx Best Hit from Drosophila | Accession Number of Drosophila | Pathway Name |
---|---|---|---|---|
LstrE2 A | gene-LSTR_LSTR002412 | Ubc6 | Dmel_CG2013 | Ubiquitin-mediated proteolysis |
LstrE2 J2 | gene-LSTR_LSTR004167 | Ubc10 | Dmel_CG5788 | Ubiquitin-mediated proteolysis |
LstrE2 E | gene-LSTR_LSTR008905 | Ubc2 | Dmel_CG6720 | Ubiquitin-mediated proteolysis |
LstrE2 H | gene-LSTR_LSTR010396 | UbcE2H | Dmel_CG2257 | Ubiquitin-mediated proteolysis |
LstrE2 G2 | gene-LSTR_LSTR011058 | Ubc7 | Dmel_CG4443 | Ubiquitin-mediated proteolysis |
LstrE2 M | gene-LSTR_LSTR015577 | UbcE2M; ubiquitin-conjugating enzyme E2M, isoform B | Dmel_CG7375 | Ubiquitin-mediated proteolysis |
LstrUbc4 | gene-LSTR_LSTR017241 | Ubc4 | Dmel_CG8284 | Ubiquitin-mediated proteolysis |
LstrEff | gene-LSTR_LSTR000118 | eff; effete, isoform B | Dmel_CG7425 | Ubiquitin-mediated proteolysis |
LstrE2 R | gene-LSTR_LSTR000713 | uncharacterized protein, isoform F | Dmel_CG7656 | Ubiquitin-mediated proteolysis |
LstrE2 W | gene-LSTR_LSTR001122 | uncharacterized protein, isoform E | Dmel_CG7220 | Ubiquitin-mediated proteolysis |
LstrVih | gene-LSTR_LSTR002766 | vih; vihar | Dmel_CG10682 | Ubiquitin-mediated proteolysis |
LstrBen | gene-LSTR_LSTR003814 | ben; bendless, isoform B | Dmel_CG18319 | Ubiquitin-mediated proteolysis |
LstrLwr | gene-LSTR_LSTR005749 | lwr; lesswright, isoform C | Dmel_CG3018 | Ubiquitin-mediated proteolysis |
LstrE2 L3 | gene-LSTR_LSTR006367 | uncharacterized protein, isoform B | Dmel_CG5823 | Ubiquitin-mediated proteolysis |
LstrE2 S | gene-LSTR_LSTR007167 | uncharacterized protein, isoform B | Dmel_CG8188 | Ubiquitin-mediated proteolysis |
LstrE2 G1 | gene-LSTR_LSTR008154 | uncharacterized protein, isoform A | Dmel_CG40045 | Ubiquitin-mediated proteolysis |
LstrBruce | gene-LSTR_LSTR014931 | Bruce; BIR repeat containing ubiquitin-conjugating enzyme, isoform B | Dmel_CG6303 | Ubiquitin-mediated proteolysis |
LstrE2 B | gene-LSTR_LSTR016706 | uncharacterized protein, isoform C | Dmel_CG10254 | Ubiquitin-mediated proteolysis |
LstrE2 Q isoform X1 | novel.10 | UBE2Q | Dmel_CG2924 | Ubiquitin-mediated proteolysis |
LstrE2 Q isoform X2 | novel.1252 | UBE2Q | Dmel_CG4502 | Ubiquitin-mediated proteolysis |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, Z.; Shen, M.; Ge, L.; Liu, F. Ubiquitin-Conjugating Enzyme E2 E Inhibits the Accumulation of Rice Stripe Virus in Laodelphax striatellus (Fallén). Viruses 2020, 12, 908. https://doi.org/10.3390/v12090908
Li Y, Zhou Z, Shen M, Ge L, Liu F. Ubiquitin-Conjugating Enzyme E2 E Inhibits the Accumulation of Rice Stripe Virus in Laodelphax striatellus (Fallén). Viruses. 2020; 12(9):908. https://doi.org/10.3390/v12090908
Chicago/Turabian StyleLi, Yao, Ze Zhou, Mi Shen, Linquan Ge, and Fang Liu. 2020. "Ubiquitin-Conjugating Enzyme E2 E Inhibits the Accumulation of Rice Stripe Virus in Laodelphax striatellus (Fallén)" Viruses 12, no. 9: 908. https://doi.org/10.3390/v12090908