Copy Number and Prevalence of Porcine Endogenous Retroviruses (PERVs) in German Wild Boars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. DNA Isolation
2.3. Classical PCR
2.4. Droplet Digital PCR
2.5. DNA Agarose Gel Electrophoresis-PCR
2.6. Ethical Statement
3. Results
3.1. PERV Copy Number in Berlin/Brandenburg Wild Boars
3.2. PERV Copy Numbers in Different Organs of a Single Pig
3.3. Prevalence of PERV-C
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Denner, J. Endogenous retroviruses. In Retroviruses: Molecular Biology, Genomics and Pathogenesis; Kurth, R., Bannert, N., Eds.; Caister Academic Press: Hethersett, UK, 2010; pp. 35–69. [Google Scholar]
- Denner, J.; Tönjes, R.R. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin. Microbiol. Rev. 2012, 25, 318–343. [Google Scholar] [CrossRef] [Green Version]
- Tönjes, R.R.; Niebert, M. Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J. Virol. 2003, 77, 12363–12368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niebert, M.; Tönjes, R.R. Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J. Virol. 2005, 79, 649–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patience, C.; Switzer, W.M.; Takeuchi, Y.; Griffiths, D.J.; Goward, M.E.; Heneine, W.; Stoye, J.P.; Weiss, R.A. Multiple groups of novel retroviral genomes in pigs and related species. J. Virol. 2001, 75, 2771–2775. [Google Scholar] [CrossRef] [Green Version]
- Denner, J. How Active Are Porcine Endogenous Retroviruses (PERVs)? Viruses 2016, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Fiebig, U.; Fischer, K.; Bähr, A.; Runge, C.; Schnieke, A.; Wolf, E.; Denner, J. Porcine endogenous retroviruses: Quantification of the copy number in cell lines, pig breeds, and organs. Xenotransplantation 2018, 25, e12445. [Google Scholar] [CrossRef]
- Yang, L.; Güell, M.; Niu, D.; George, H.; Lesha, E.; Grishin, D.; Aach, J.; Shrock, E.; Xu, W.; Poci, J.; et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 2015, 350, 1101–1104. [Google Scholar] [CrossRef] [Green Version]
- Niu, D.; Wei, H.J.; Lin, L.; George, H.; Wang, T.; Lee, I.H.; Zhao, H.Y.; Wang, Y.; Kan, Y.; Shrock, E.; et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017, 357, 1303–1307. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, U.; Kimsa, M.C.; Strzalka-Mrozik, B.; Kimsa, M.W.; Adamska, J.; Lipinski, D.; Zeyland, J.; Szalata, M.; Slomski, R.; Jura, J.; et al. Quantitative analysis of porcine endogenous retroviruses in different organs of transgenic pigs generated for xenotransplantation. Curr. Microbiol. 2013, 67, 505–514. [Google Scholar] [CrossRef]
- Dieckhoff, B.; Kessler, B.; Jobst, D.; Kues, W.; Petersen, B.; Pfeifer, A.; Kurth, R.; Niemann, H.; Wolf, E.; Denner, J. Distribution and expression of porcine endogenous retroviruses in multi-transgenic pigs generated for xenotransplantation. Xenotransplantation 2009, 16, 64–73. [Google Scholar] [CrossRef]
- Pal, N.; Baker, R.; Schalk, S.; Scobie, L.; Tucker, A.W.; Opriessnig, T. Detection of porcine endogenous retrovirus (PERV) viremia in diseased versus healthy US pigs by qualitative and quantitative real-time RT-PCR. Transbound. Emerg. Dis. 2011, 58, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Semaan, M.; Rotem, A.; Barkai, U.; Bornstein, S.; Denner, J. Screening pigs for xenotransplantation: Prevalence and expression of porcine endogenous retroviruses in Göttingen minipigs. Xenotransplantation 2013, 20, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, Z.; Pan, M.; Ge, M.; Wang, Y.; Gao, Y. Genetic prevalence of porcine endogenous retrovirus in chinese experimental miniature pigs. Transplant. Proc. 2011, 43, 2762–2769. [Google Scholar] [CrossRef] [PubMed]
- Kaulitz, D.; Mihica, D.; Dorna, J.; Costa, M.R.; Petersen, B.; Niemann, H.; Tönjes, R.R.; Denner, J. Development of sensitive methods for detection of porcine endogenous retrovirus-C (PERV-C) in the genome of pigs. J. Virol. Methods 2011, 175, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Fujimura, T.; Miyagawa, S.; Takahagi, Y.; Shigehisa, T.; Murakami, H. Prevalence of porcine endogenous retroviruses in domestic, minature, and genetically modified pigs in Japan. Transplant. Proc. 2008, 40, 594–595. [Google Scholar] [CrossRef]
- Dieckhoff, B.; Puhlmann, J.; Büscher, K.; Hafner-Marx, A.; Herbach, N.; Bannert, N.; Büttner, M.; Wanke, R.; Kurth, R.; Denner, J. Expression of porcine endogenous retroviruses (PERVs) in melanomas of Munich miniature swine (MMS) Troll. Vet. Microbiol. 2007, 123, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ma, Y.; Lv, M.; Yang, Y.; Guo, Y.; Yu, X.; Tian, K.; Zhang, J. Large-scale survey of porcine endogenous retrovirus in Chinese miniature pigs. Comp. Immunol. Microbiol. Infect. Dis. 2008, 31, 367–371. [Google Scholar] [CrossRef]
- Hector, R.D.; Meikle, S.; Grant, L.; Wilkinson, R.A.; Fishman, J.A.; Scobie, L. Pre-screening of miniature swine may reduce the risk of transmitting human tropic recombinant porcine endogenous retroviruses. Xenotransplantation 2007, 14, 222–226. [Google Scholar] [CrossRef]
- Mang, R.; Maas, J.; Chen, X.; Goudsmit, J.; van Der Kuyl, A.C. Identification of a novel type C porcine endogenous retrovirus: Evidence that copy number of endogenous retroviruses increases during host inbreeding. J. Gen. Virol. 2001, 82 Pt 8, 1829–1834. [Google Scholar] [CrossRef]
- Stillfried, M.; Fickel, J.; Börner, K.; Wittstatt, U.; Heddergott, M.; Ortmann, S.; Kramer-Schadt, S.; Frantz, A.C. Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J. Appl. Ecol. 2016, 54, 272–281. [Google Scholar] [CrossRef]
- Denner, J. Recombinant porcine endogenous retroviruses (PERV-A/C): A new risk for xenotransplantation? Arch Virol. 2008, 153, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Harrison, I.; Takeuchi, Y.; Bartosch, B.; Stoye, J.P. Determinants of high titer in recombinant porcine endogenous retroviruses. J. Virol. 2004, 78, 13871–13879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denner, J.; Specke, V.; Thiesen, U.; Karlas, A.; Kurth, R. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 2003, 314, 125–133. [Google Scholar] [CrossRef] [Green Version]
- German Hunting Association. Available online: https://www.jagdverband.de/sites/default/files/2019-01_Infografik_Jahresstrecke_Schwarzwild_2018.pdf (accessed on 10 December 2019).
- Pinheiro, L.B.; Coleman, V.A.; Hindson, C.M.; Herrmann, J.; Hindson, B.J.; Bhat, S.; Emslie, K.R. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 2012, 84, 1003–1011. [Google Scholar] [CrossRef]
- Morozov, V.A.; Ludwig, S.; Ludwig, B.; Rotem, A.; Barkai, U.; Bornstein, S.R.; Denner, J. Islet cell transplantation from Göttingen minipigs to cynomolgus monkeys: Analysis of virus safety. Xenotransplantation 2016, 23, 320–327. [Google Scholar] [CrossRef]
- Stocking, C.; Kozak, C.A. Murine endogenous retroviruses. Cell. Mol. Life Sci. 2008, 65, 3383–3398. [Google Scholar] [CrossRef] [Green Version]
- Plotzki, E.; Heinrichs, G.; Kubícková, B.; Ulrich, R.G.; Denner, J. Microbiological characterization of a newly established pig breed, Aachen Minipigs. Xenotransplantation 2016, 23, 159–167. [Google Scholar] [CrossRef]
- Krüger, L.; Kristiansen, Y.; Reuber, E.; Möller, L.; Laue, M.; Reimer, C.; Denner, J. A Comprehensive Strategy for Screening for Xenotransplantation-Relevant Viruses in a Second Isolated Population of Göttingen Minipigs. Viruses 2019, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Patience, C.; Takeuchi, Y.; Weiss, R.A. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997, 3, 282–286. [Google Scholar] [CrossRef]
- Ngo, M.H.; Arnal, M.; Sumi, R.; Kawasaki, J.; Miyake, A.; Grant, C.K.; Otoi, T.; Fernández de Luco, D.; Nishigaki, K. Tracking the Fate of Endogenous Retrovirus Segregation in Wild and Domestic Cats. J. Virol. 2019, 93. [Google Scholar] [CrossRef]
- Coffin, J.M.; Hughes, S.H.; Varmus, H.E. Retroviruses; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1997. [Google Scholar]
- Denner, J. Expression and function of endogenous retroviruses in the placenta. APMIS 2016, 124, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Frantz, L.; Meijaard, E.; Gongora, J.; Haile, J.; Groenen, M.A.; Larson, G. The Evolution of Suidae. Annu. Rev. Anim. Biosci. 2016, 4, 61–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scobie, L.; Taylor, S.; Wood, J.C.; Suling, K.M.; Quinn, G.; Meikle, S.; Patience, C.; Schuurman, H.J.; Onions, D.E. Absence of replication-competent human-tropic porcine endogenous retroviruses in the germ line DNA of inbred miniature Swine. J. Virol. 2004, 78, 2502–2509. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.C.; Quinn, G.; Suling, K.M.; Oldmixon, B.A.; Van Tine, B.A.; Cina, R.; Arn, S.; Huang, C.A.; Scobie, L.; Onions, D.E.; et al. Identification of exogenous forms of human-tropic porcine endogenous retrovirus in miniature Swine. J. Virol. 2004, 78, 2494–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Fons, F.; Segalés, J.; Gortázar, C. A review of viral diseases of the European wild boar: Effects of population dynamics and reservoir rôle. Vet. J. 2008, 176, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Reiner, G.; Bronnert, B.; Hohloch, C.; Reinacher, M.; Willems, H. Distribution of ORF2 and ORF3 genotypes of porcine circovirus type 2 (PCV-2) in wild boars and domestic pigs in Germany. Vet. Microbiol. 2011, 148, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Vicente, J.; Segalés, J.; Höfle, U.; Balasch, M.; Plana-Durán, J.; Domingo, M.; Gortázar, C. Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Vet. Res. 2004, 35, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Cságola, A.; Kecskeméti, S.; Kardos, G.; Kiss, I.; Tuboly, T. Genetic characterization of type 2 porcine circoviruses detected in Hungarian wild boars. Arch Virol. 2006, 151, 495–507. [Google Scholar] [CrossRef]
- Franzo, G.; Tucciarone, C.M.; Drigo, M.; Cecchinato, M.; Martini, M.; Mondin, A.; Menandro, M.L. First report of wild boar susceptibility to Porcine circovirus type 3: High prevalence in the Colli Euganei Regional Park (Italy) in the absence of clinical signs. Transbound. Emerg. Dis. 2018. [Google Scholar] [CrossRef]
- Klaumann, F.; Dias-Alves, A.; Cabezón, O.; Mentaberre, G.; Castillo-Contreras, R.; López-Béjar, M.; Casas-Díaz, E.; Sibila, M.; Correa-Fiz, F.; Segalés, J. Porcine circovirus 3 is highly prevalent in serum and tissues and may persistently infect wild boar (Sus scrofa scrofa). Transbound Emerg Dis. 2019, 66, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Prinz, C.; Stillfried, M.; Neubert, L.K.; Denner, J. Detection of PCV3 in German wild boars. Virol. J. 2019, 16, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number | Pig Breed | Positive Pigs/Tested Pigs | Percentage (%) | Reference |
---|---|---|---|---|
1 | Transgenic and non-transgenic, Germany | 176/181 | 97 | Dieckhoff et al., 2009 [11] |
Wild boar, Berlin | 18/18 | 100 | ||
2 | Farm animals, USA | 1/16, 2/16, 14/34, 8/32 | 6.3–41.2 | Pal et al., 2011 [12] |
3 | Göttingen minipigs | 15/15 | 100 | Semaan et al., 2013 [13] |
4 | Chinese miniature pigs | 6/20 | 30 | Liu et al., 2011 [14] |
5 | Farm animals, German landrace, Germany | 14/16 | 87.5 | Kaulitz et al., 2011 [15] |
Genetically modified German landrace | 14/15 | 93.3 | ||
German landrace ×Duroc×minipig | 7/7 | 100 | ||
9 * | Berkshire | 129/191 | 68 | Fujimura et al., 2008 [16] |
Landrace | 8/16 | 50 | ||
Duroc | 26/50 | 52 | ||
Large White | 9/43 | 21 | ||
Miniature, pig | 5/6 | 83 | ||
Genetically modified triple cross-breed pig | 36/36 | 100 | ||
10 | Chinese miniature pigs | 113/348 | 30 | Wu et al., 2007 [17] |
11 | Munich miniature swine (MMS) Troll | 4/4 | 100 | Dieckhoff et al., 2007 [18] |
12 | Miniature swine | 17/17 | 100 | Hector et al., 2007 [19] |
13 ** | Pietran | all tested *** | 100 | Mang et al. 2001 [20] |
Hampshire | all tested | 100 | ||
Meishan | all tested | 100 | ||
Wild boar | 0/1 | 0 | ||
Large White | all tested | 0 | ||
Dutch Landrace | all tested | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krüger, L.; Stillfried, M.; Prinz, C.; Schröder, V.; Neubert, L.K.; Denner, J. Copy Number and Prevalence of Porcine Endogenous Retroviruses (PERVs) in German Wild Boars. Viruses 2020, 12, 419. https://doi.org/10.3390/v12040419
Krüger L, Stillfried M, Prinz C, Schröder V, Neubert LK, Denner J. Copy Number and Prevalence of Porcine Endogenous Retroviruses (PERVs) in German Wild Boars. Viruses. 2020; 12(4):419. https://doi.org/10.3390/v12040419
Chicago/Turabian StyleKrüger, Luise, Milena Stillfried, Carolin Prinz, Vanessa Schröder, Lena Katharina Neubert, and Joachim Denner. 2020. "Copy Number and Prevalence of Porcine Endogenous Retroviruses (PERVs) in German Wild Boars" Viruses 12, no. 4: 419. https://doi.org/10.3390/v12040419