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Abstract: Porcine endogenous retroviruses (PERVs) are integrated in the genome of pigs and are
transmitted like cellular genes from parents to the offspring. Whereas PERV-A and PERV-B are
present in all pigs, PERV-C was found to be in many, but not all pigs. When PERV-C is present,
recombination with PERV-A may happen and the PERV-A/C recombinants are characterized by a
high replication rate. Until now, nothing has been known about the copy number of PERVs in wild
boars and little is known about the prevalence of the phylogenetically youngest PERV-C in ancient
wild boars. Here we investigated for the first time the copy number of PERVs in different populations
of wild boars in and around Berlin using droplet digital PCR. Copy numbers between 3 and 69 per
genome have been measured. A lower number but a higher variability was found compared to
domestic pigs, including minipigs reported earlier (Fiebig et al., Xenotransplantation, 2018). The wild
boar populations differed genetically and had been isolated during the existence of the Berlin wall.
Despite this, the variations in copy number were larger in a single population compared to the
differences between the populations. PERV-C was found in all 92 analyzed animals. Differences in
the copy number of PERV in different organs of a single wild boar indicate that PERVs are also active
in wild boars, replicating and infecting new cells as has been shown in domestic pigs.
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1. Introduction

Endogenous retroviruses are the result of infection and integration of ancient retroviruses into
the germ line of a host. They are widely distributed in many species including humans and play an
important role in placentogenesis [1]. In pigs, three types of porcine endogenous retroviruses (PERVs)
have been described: PERV-A and PERV-B, which are found in all pigs, and PERV-C, which are found
in many, but not all pigs. All three viruses belong to the genus gammaretroviruses and they differ in
their envelope protein, mainly in the receptor-binding domain and in the receptor usage. They are
highly related in the gag and pol sequences but differ in the sequence of the long terminal repeats
(LTR), as well as in the age of integration and the prevalence among pigs. PERV-A and PERV-B are
able to infect cells from humans and many other species, while PERV-C is an eco-tropic virus infecting
only pig cells [2]. PERV-A and PERV-C have the same origin and are younger compared to PERV-B.
PERV is approximately 7.6 million years old [3]. PERVs without sequence repeats in the U3 region of
the LTR evolved approximately 3.4 million years ago, being the phylogenetically younger structure.
The age determined for PERV correlates with the time of separation between pigs (Suidae, Sus scrofa)
and their closest relatives, American born peccaries, 7.4 million years ago [3]. PERV-C originated more
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recently (1.5 to 3.5 million years ago) [4]. While all Suidae members including the warthog and red
river hog contained PERV-B, the warthog lacked detectable PERV-A and PERV-C and the red river hog
lacked PERV-C [5].

As the result of de novo infection and/or transposition, multiple integrated proviruses are found
in the pig genome. The estimate of the exact number of pro-viral copies is difficult, and different
methods give different results (for review see [6]). For example, using real-time PCR, between one
and 95 copies have been reported. Differences between different pig breeds have also been observed.
Using droplet digital PCR (ddPCR), between 46 to 70 copies have been found in four different lines
of pig kidney PK-15 cells [7,8] and 26 copies in porcine fetal fibroblast cells [9], as well as 69 copies
in Aachen minipigs, 64 copies in Göttingen minipigs, and 59 copies in German landrace pigs [7].
Furthermore, different copy numbers were found in different organs of a single pig, indicating that
PERVs are de novo infecting and integrating into pig cell genomes in the living animal [6,7].

As mentioned above, PERV-C was not found in all pigs. The prevalence of PERV-C in various pig
breeds in different countries ranged from 6% to 100% (Table 1) [10–20]. Only one previous study by our
laboratory found a prevalence of 100% in wild boars near Berlin, Germany [11]; in addition, a single
wild boar in the Netherlands was analyzed and no PERV-C was found [20]. To study the prevalence of
the phylogenetically youngest PERV-C in ancient wild boars, a greater number of wild boars living in
two different urban forests in Berlin as well as in forests in Brandenburg, outside Berlin, were screened.
These forests were divided by the Berlin wall which existed in the years 1961 until 1989. This means
the wild boars in East and West Berlin had no contact in these years. The animals had been genetically
analyzed and based on the analysis of 13 microsatellite loci, samples were grouped into two genetic
clusters: animals living in the Grunewald forest, in the former Western part of Berlin, belonged to
the Bayesian Analysis of Population Structure (BAPS) cluster 1, while animals in the other regions
and mainly in Brandenburg belonged to the BAPS cluster 2 [21] (Figure 1). Therefore, it would be of
interest whether the division of the populations for nearly 30 years had an influence on the general
copy number in the genome of the pigs and the prevalence of PERV-C. PERV-C is an important topic in
xenotransplantation since the presence of the ecotropic PERV-C allows recombination with PERV-A,
resulting in human-tropic and highly replication-competent PERV-A/C [22–24].
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Figure 1. Origin and genetic characterization (Bayesian Analysis of Population Structure, BAPS cluster)
of the wild boars tested. The locations are: Berlin Grunewald (GW, blue) (BAPS cluster 1), Berlin
Brandenburg (BB-1, -2, -3; red), Berlin East (BE-1, -2, black) (all BAPS cluster 2). The red line indicates
the Berlin wall around Berlin West, the gray line indicates the border of East Berlin. Outside Berlin is
the state Brandenburg.
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Table 1. Prevalence of Porcine endogenous retroviruse (PERV)-C in different pig breeds. Wild boars
are shown in position 1 and 13.

Number Pig Breed Positive Pigs/Tested
Pigs

Percentage
(%) Reference

1

Transgenic and
non-transgenic, Germany 176/181 97 Dieckhoff et al.,

2009 [11]
Wild boar, Berlin 18/18 100

2 Farm animals, USA 1/16, 2/16, 14/34, 8/32 6.3–41.2 Pal et al., 2011 [12]

3 Göttingen minipigs 15/15 100 Semaan et al., 2013 [13]

4 Chinese miniature pigs 6/20 30 Liu et al., 2011 [14]

5

Farm animals, German
landrace, Germany 14/16 87.5

Kaulitz et al., 2011 [15]Genetically modified
German landrace 14/15 93.3

German landrace
×Duroc×minipig 7/7 100

9 *

Berkshire 129/191 68

Fujimura et al.,
2008 [16]

Landrace 8/16 50

Duroc 26/50 52

Large White 9/43 21

Miniature, pig 5/6 83

Genetically modified triple
cross-breed pig 36/36 100

10 Chinese miniature pigs 113/348 30 Wu et al., 2007 [17]

11 Munich miniature swine
(MMS) Troll 4/4 100 Dieckhoff et al.,

2007 [18]

12 Miniature swine 17/17 100 Hector et al., 2007 [19]

13 **

Pietran all tested *** 100

Mang et al. 2001 [20]

Hampshire all tested 100

Meishan all tested 100

Wild boar 0/1 0

Large White all tested 0

Dutch Landrace all tested 100

*All animals from Japan, ** all animals from the Netherlands, *** the number of tested animals was not indicated.

2. Materials and Methods

2.1. Animals

Wild boars (n = 89) were hunted in the city of Berlin as well as in adjoining parts of the federal State
of Brandenburg, Germany, for food production by hunters of the state- and town-owned forests and by
special hunters in Berlin. Between 1949 and 1989, two German states, the Federal Republic of Germany
(FRG) and the German Democratic Republic (GDR), existed and Berlin was divided by the 167 km
long Berlin wall which surrounded the Western part of the city. In total, four genetic clusters of wild
boars have been identified based on the analysis of 13 microsatellite loci, two within urban forests that
belonged to former West-Berlin (Grunewald and Tegel) and two in the former Eastern part (Köpenick
and Brandenburg including Pankow) (Figure 1) [21]. We included samples of one Eastern and one
Western cluster in this study: the Grunewald Bayesian Analysis of Population Structure (BAPS) cluster
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1 and the Brandenburg BAPS cluster 2 (including also wild boars from Pankow) [21]. All animals were
older than one year. Spleens were sampled directly by the scientists in agreement with the hunters
between 2011 and 2015, stored frozen at −20 ◦C and DNA was isolated at the Leibniz Institute.

In addition, three wild boars were hunted for food production near Berlin in the state Brandenburg
in 2019. The heart, liver, spleen, kidney and lung tissues were removed immediately, stored in a
refrigerator and DNA was isolated the next day at the Robert Koch Institute.

The estimated wild boar population size in the sampling area was calculated to be between
5000 and 10,000 animals. Of the population, 2644 animals were shot in Berlin and 89,819 animals were
shot in the entire state of Brandenburg in the years 2017/2018 [25].

Three PERV-C positive domestic pigs (German landrace) were used for comparison.

2.2. DNA Isolation

DNA from the 89 wild boars hunted between 2011 and 2015 was extracted using the First-DNA
all-tissue Kit (Gen-Ial GmbH, Troisdorf, Germany), following the manufacturer’s instructions. DNA was
quantified using a Qubit 3.0 Fluorometer (ThermoFischer) and the 260nm/280nm ratio was determined
using a NanoDrop ND-1000 (Thermo Fisher Scientific Inc., Worcester, MA, USA) and used for genetic
studies including analysis of 13 microsatellite loci [21] and our studies.

The DNA from tissues of the three animals hunted in the state Brandenburg in 2019 was isolated
using the DNeasy blood and tissue kit (Qiagen) according to the manufacturer’s instructions.

2.3. Classical PCR

Using a primer pair in the pol region of PERV (PERVpol), all PERV types (PERV-A, PERV-B and
PERV-C) were detected [8]; PERV-C was detected using specific primers for the envelope region of
PERV-C (Supplemental Table S1) [15].

2.4. Droplet Digital PCR

Droplet Digital PCR (ddPCR) was performed according to the manufacturer’s instructions (Bio-Rad,
Hercules, CA, USA, [http://www.bio-rad.com/de-de/applications-technologies/droplet-digital-pcr-
ddpcr-technology?ID=MDV31M4VY]) using a QX200 droplet generator and a QX100 droplet reader
(Bio-Rad). Purified genomic DNA (100 ng genomic DNA) was digested with MseI (New England
Biolabs, USA) (20U) at 37 ◦C for 1 h and the restriction enzyme was heat inactivated. The DNA digest
was diluted to 5–10 ng/µL for the ddPCR reaction. The ddPCR mix consisted of 10 µL 2× ddPCR
Master mix, 1.8 µL of each 10 µM target primers (Supplemental Table S1), 0.5 µl of each 10 µM probes
(FAM/HEX), 2.5–10 ng digested DNA and water to a total volume of 20 µL. The following cycling
conditions were used: 10min initial enzyme activation at 95 ◦C, 30 sec denaturation at 94 ◦C, 1 min
annealing and extension at 59 ◦C (45 cycles) and final 10 min enzyme deactivation at 98 ◦C using a
Master cycler ProS (Eppendorf). The temperature ramp rate was 2 ◦C per second. To run a gradient,
temperatures between 57 and 62 ◦C were used. To determine the copy number the program Quanta
Soft 1.7.4 was used. In order to measure the exact copy number porcine GAPDH or porcine beta actin
was used as reference (for primers and probes see Supplemental Table S1).

2.5. DNA Agarose Gel Electrophoresis-PCR

This method is like a Southern blot analysis and was used to demonstrate integration of retroviral
proviruses into high molecular cellular DNA. Purified cellular wild boar DNA was digested with the
restriction enzyme EcoRI (fast digestion, Thermo Fisher), and an agarose gel (0.8%) electrophoresis
(70 V, 2 h) was performed. Afterwards the gel was cut in equal fractions, the DNA was isolated from
each fraction and tested in a classical PCR using primers specific for PERVpol (Supplemental Figure
S1). Whereas in the Southern blot analysis a radioactive probe is used to detect viral sequences in
high-molecular DNA fragments with had been obtained by treatment with a restriction enzyme and
separated by electrophoresis, here a PCR with two virus-specific primers was used.

http://www.bio-rad.com/de-de/applications-technologies/droplet-digital-pcr-ddpcr-technology?ID=MDV31M4VY
http://www.bio-rad.com/de-de/applications-technologies/droplet-digital-pcr-ddpcr-technology?ID=MDV31M4VY
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2.6. Ethical Statement

All tissue samples were collected from wild boars hunted for food production by hunters of the
state- and town-owned forests and by special hunters in Berlin and independently from the project;
therefore, no wild boars were harmed or killed for the project.

3. Results

3.1. PERV Copy Number in Berlin/Brandenburg Wild Boars

PERV-A and PERV-B were found by PCR using specific primers for the PERV-Aenv and PERV-Benv
sequences in all wild boars, therefore their prevalence was 100%. The integration of the proviruses was
demonstrated by a new method which is equivalent to the Southern blot analysis; PERV integration
was demonstrated by PCR detection of viral sequences in high molecular weight fractions of pig DNA
after or without EcoRI digestion and agarose gel electrophoresis (Supplemental Figure S1).

Using a droplet digital PCR (ddPCR) with a probe corresponding to a pol sequence (Supplemental
Table S1) highly conserved among all PERVs and using as a reference the porcine GAPDH, the total copy
number of all PERV sequences (including PERV-A, PERV-B and PERV-C) was measured. The ddPCR had
been validated before, always showing identical results (Supplemental Figure S2). In the 15 investigated
wild boars from the Grunewald (GW) (BAPS cluster 1) sample location, PERV copy numbers between
5 and 40 were found with a median of 20 copies and a standard deviation of 9.5 (Figure 2). All other
animals belonged to BAPS cluster 2: in the 14 investigated wild boars of the Berlin-Brandenburg
sample location 1 (BB-1), between three and 54 copies were found with a median of 29 copies and a
standard deviation of 16. In the nine investigated wild boars of the Berlin-Brandenburg sample location
2 (BB-2), between 15 and 47 copies were found with a median of 35 copies and a standard deviation
of 14. In the 11 investigated pigs of the Berlin-Brandenburg sample location 3 (BB-3), between seven
and 58 copies were found with a median of 35 and a standard deviation of 14. In the five pigs of the
Berlin East sample location 1 (BE-1), between 26 and 39 copies were found with a median of 32 and
a standard deviation of five. Finally, in the six animals of the Berlin East sample location 2 (BE-2),
between 17 and 56 copies were found with a median of 38 and a standard deviation of 15. This animal
group was interesting because two animals had a low copy number (17 and 18) and the others had a
high copy number (42–56). In summary, in all animals the copy number varied between three and
56 and the differences in each cluster group were larger compared with the differences between the
sample locations (between 29 and 38 copies) (Figure 2). In most cases the differences in the copy
number between animals were statistically not significant. However, the differences between wild
boars in GW (Grunewald) and BB-3 (Berlin-Brandenburg - 3) (p = 0.005) and between GW and BE-1
(Berlin East 1) were significant (p = 0.02) (Figure 2).
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Figure 2. Number of integrated PERV proviruses in genetically different wild boars living in different
locations in Berlin and Brandenburg. The animals are sorted by the location and the BAPS cluster.
Each point indicates one animal, the median and the standard deviations are shown. Grunewald (GW,
blue) (BAPS cluster 1), Berlin Brandenburg (BB-1, -2, -3; red), Berlin East (BE-1, -2, black) (all BAPS
cluster 2), see Figure 1.

3.2. PERV Copy Numbers in Different Organs of a Single Pig

It has been shown that in domestic pigs the PERV copy number is different in different organs of a
single animal, indicating that PERVs are active and infect new cells and integrate de novo in somatic
cell genomes in living pigs [6,7]. In order to analyze whether the same situation can be observed in
wild boars, organs from three different wild boars hunted in the state Brandenburg near Berlin were
analyzed. Using ddPCR, the heart, liver, spleen, kidney and lung of three animals were analyzed
(Figure 3A). In the case of wild boar 1, the copy number varied between 44 and 47 with a median of
46 and a standard deviation of 1.2 for all tested organs. In the case of wild boar 2, the copy number
varied between 53 and 59 with a median of 56 and a standard deviation of 2.4. In the case of wild
boar 3, the copy number varied between 50 and 61 with a median of 53.5 and a standard deviation of
four. A large difference was observed in the case of the liver, with 46 copies in animal 1 and 61 copies
in animal 3. The animal with the largest difference in organs was animal 3, ranging from 49 copies
in the heart and 61 copies in the liver. Although the number of analyzed animals was small, a great
variability was observed in the liver and spleen of all animals and a low variability was found in the
heart, reflecting higher cell proliferation and increased de novo integration of PERV in liver and spleen
compared to the heart.

To analyze the difference inside a single organ of a wild boar, the copy number in three different
lobes of the liver from three animals and the copy number in five different regions of the spleen of
a single animal were studied (Figure 3B). The copy numbers ranged from 44 in one spleen to 62 in
one liver (Figure 3A) and from 53 to 74 in different liver lobes (Figure 3B). The difference in the copy
number between the liver lobe 1 and liver lobe 2 was significant (p = 0.007) (Figure 3B).
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Figure 3. Number of integrated PERV proviruses (A) in different organs from three recently hunted
wild boars in Brandenburg and (B) in three different regions of the liver and in five regions of the spleen
of wild boar 3.

3.3. Prevalence of PERV-C

Using a classic PCR, PERV-C was detected in all tested 92 wild boars from all sample locations
(Figure 4). The primer binding and the identical size of the amplicons indicate that the sequences in
domestic pigs (German landrace) and wild boars analyzed here are identical (Figure 4).
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Figure 4. Results of the PCR specific for PERV-C and pol region of PERV (PERVpol) of DNA from wild
boars and domestic pigs (German landrace). PK15 cells were used as control and the length of the
amplicons is indicated.

4. Discussion

This study was performed to answer the question of whether wild boars, which are more ancient
compared with domestic pigs, contain less PERV sequences in their genome and whether they harbor
PERV-C, the phylogenetically youngest PERV. The main results of the study are: (i) For the first time
the number of PERV copies in wild boars was estimated using ddPCR, (ii) the PERV copy number is
slightly lower compared with domestic pigs, but differed significantly from animal to animal, (iii) as
expected, PERV is integrated in the genome of wild boars, (iv) the PERV copy number in different
tissues of a single animal is different, indicating an active replication and de novo integration in the
living pigs, and (v) PERV-C was found to be present in all pigs in and around Berlin.

(i) The copy number of PERVs in different pig breeds but not in wild boars had been analyzed in the
past and differences between different pig breeds had been observed (Table 1). In these studies, different
methods had been used, mainly real-time PCR, but also Southern blot, PCR titration, fluorescence in situ
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hybridization (FISH), genome wide sequencing and ddPCR (for review see [6]). Therefore, the reason
for the different results may be in the method used and/or the pig breed analyzed. From all methods,
ddPCR seems to be the most reliable. One major advantage is that reference standard curves are not
required for ddPCR, and bias effects arising from amplification efficiency and PCR inhibitors were
reduced. As widely demonstrated in the literature, the ddPCR technique has some other favorable
features compared to real-time PCR: it provides absolute quantification based on the principles of
sample partitioning and Poisson statistics, thus overcoming the normalization and calibrator issues; it
has shown increased precision and sensitivity; it is relatively insensitive to PCR inhibitors and directly
provides the result of the analysis expressed as number of copies of target per microliter of reaction [26].
These data, including our own experience with the real-time PCR, demonstrate the superiority of
ddPCR when compared to other methods.

(ii) The PERV copy number in wild boars is lower compared to that in domestic pigs and minipigs
but differed significantly from wild boar to wild boar as shown above (Figure 2). Previously, we analyzed
the PERV copy number in Göttingen minipigs, which had been used in a preclinical trial transplanting
islet cells into cynomolgus monkeys without transmission of PERV [27], and in Aachen minipigs using
ddPCR. Forty-five to 93 (mean 64) and 34 to 97 (mean 69) copies, respectively, were found [7]. The copy
number in these minipgs is higher compared with the wild boars; the difference between all wild boars
studied here (n = 59, Figure 2) and Göttingen minipigs studied previously (n = 15, Reference [7]) is
significant (p = 3.78988 × 10−15). In a similar situation, studies have shown that in inbred mice the
number of murine endogenous proviruses is also higher compared with wild mice [28]. PERV-Cs were
found in both Göttingen and Aachen minipigs. Whereas in Göttingen minipigs from Ellegaard no
recombinant PERV-A/Cs were found [13], in some Aachen minipigs PERV-A/C was found in the liver
and spleen, but not in the peripheral blood mononuclear cells (PBMCs) [29]. In contrast, PERV-A/Cs
were found in PBMCs from some Göttingen minipigs bred at the Göttingen university with a high
expression of PERVpol and PERV-C [30].

(iii) Although the integration of PERVs into the genome of different pig cell lines such as PK15,
ST-IOWA and others, and in PERV-infected human 293 cells has been shown using Southern blot
analysis [31], no such experiments had been performed with DNA from wild boars. A PCR analysis of
fractions of wild boar DNA after EcoRI digestion and agarose gel electrophoresis showed positive
results in high molecular and undigested DNA (Supplemental Figure S1), clearly demonstrating PERV
integration in the wild boar genome.

(iv) The fact that we detected different copy numbers of PERV in different tissues of a single
animal and even in the same organ indicates an active replication and de novo integration in the living
pigs. An endogenous retrovirus behaves usually like a cellular gene in that it is present in all cells of
the organism with the same copy number [1]. However, PERV is still active and therefore the copy
number is higher in some organs where it replicates well compared to the germline.

Among all species, chicken, mice, and cats are best analyzed concerning the endogenous
retroviruses in their genomes. For example, during cat evolution various exogenous retroviruses
infected different cat lineages and generated numerous endogenous retroviruses in the host genome,
some of which remain replication competent [32]. These viruses also can recombine and integrate de
novo. In all these species, eco-tropic viruses were found to be able to infect only cells of their own
species, as well as xenotropic or polytropic viruses being able to infect cells of other species. Whereas in
these species retroviruses are known to induce tumors, in pigs until now such an association was
not reported [1,33]. In addition, in many mammalian species the role of endogenous retroviruses in
placentogenesis is well studied, whereas in pigs an involvement of PERVs is still unknown [34].

(v) The fact that all wild boars in and around Berlin are carrying PERV-C is interesting because
some domestic pigs of different strains are PERV-C negative (Table 1). This finding confirms our
previous report [11] showing that wild boars near Berlin were all PERV-C positive. Currently there
is still no information about wild boars in other countries. This also indicates that PERV-C was
introduced into these animals a long time ago. The animals in Berlin and Brandenburg represent recent
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European wild boar S. s. scrofa, a medium-sized, dark to rusty brown-haired subspecies with long and
relatively narrow lacrimal bones. The evolutionary history of Sus is best explained by many episodes of
interspecific admixture [35]. Pigs were definitively domesticated in an independent long-term process
in at least two locations: East Asia and Near East. However, there is a lack of consistency between
the genetic and archeological records, and domestic pigs appeared suddenly alongside wild boars in
Europe and other places. Once there, hybridization with the local wild boar happened. The genetic
differentiation within the modern wild boar, Sus scrofa, is mirrored by significant morphological
variation, and 15 subtypes and 80 taxa have been described within S. scrofa [35]. Importantly, wild
boars harbor a significant amount of genetic variation not found in domestic populations. This goes in
line with the genetic differences observed in the pigs in East and West Berlin [21]. Despite this there is
no significant difference in the PERV copy number between the different populations in and around
Berlin (Figure 2).

At present it remains unclear whether wild boars can release human-tropic PERVs. The common
method to detect this, e.g., co-incubation of mitogen-stimulated pig PBMCs highly susceptible to
human 293 cells, could not be used since wild boar PBMCs were not available. However, based on
previous studies, it is unlikely that wild boars release infectious particles in this assay because until
now positive results were reported only in minipigs [36,37], including one case of Göttingen minipigs,
whereas PBMCs from 50 other pigs did not release the virus [31]. In all cases PERV-A/C were released
from PBMCs and detected by this assay [31,37,38]

Finally, it should be mentioned that numerous other viruses have been found in wild boars,
including suid alphaherpesvirus 1 (pseudorabies virus), a pestivirus causing classical swine fever,
porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus 2 (PCV2) and many
others [38–44]. It seems likely that the origin of PCV2 infection in wild boars could be through
contact with domestic pigs, not least because of the high PCV2 infection rate in pig herds. An only
recently detected new circovirus, porcine circovirus 3 (PCV3), was also found in wild boars [42,43].
Most interestingly, PCV2 and PCV3 were also found in up to 50% of both clusters of the wild boars in
East and West Berlin analyzed here [44].

5. Conclusions

This is the first determination of the PERV copy number in wild boars. The number is slightly
lower compared with that of domestic pigs. In genetically different populations of wild boars in
and around Berlin, which were divided during the existence of the Berlin wall, the copy number of
PERVs was nearly the same. Most importantly, the copy number differed from animal to animal.
Furthermore, differences in the copy number of PERV in different tissues of a single animal indicate an
active replication and de novo integration of PERV in the living pigs. Although domestic pigs originate
from ancestors of the wild boars, all wild boars studied here were PERV-C positive whereas some
domestic pigs are PERV-C negative.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1999-4915/12/4/419/s1.
Figure S1: A, Agarose gel (0.8%) electrophoresis (70 V, 2 hours) of purified DNA from a wild boar, either untreated
(lane 1) or treated with EcoRI (fast digest, Thermo Fisher) for 90 min (lane 2, 3). The marker (M) is the GeneRuler
1 kb DNA ladder (Thermo Fisher). After electrophoresis the gel was cut in fractions (1 to 14), from each fraction
the DNA was isolated and tested in a PCR using the PERVpol primers. PERV positive (+, ++, +++, ++++) and
negative fractions (–) are indicated. In parallel the high-molecular DNA from the untreated DNA (ellipse in lane 1,
A) was isolated and analysed in the PCR using PERVpol primers. The result was ++++. B, Results of the PCR
testing for PERV using the DNA eluted from gel fractions 1 to 14 and untreated sample (U) as shown in figure A,
M, Marker; PK15, positive control, DNA from PK15 cells, the length of the amplicon (236 bp) is marked with an
arrow; Table S1: Primers and probes used for the detection of PERV.
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