Evaluation of Commercially Available Viral Transport Medium (VTM) for SARS-CoV-2 Inactivation and Use in Point-of-Care (POC) Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Facilities
2.2. Viral Inactivation Protocols
2.3. Analysis and Statistics
3. Results
3.1. VTMs and Reagents with Inactivating Ingredients
3.2. VTM without Inactivating Ingredient
3.3. Sterilizing Solution (Sterigene)
3.4. Heat Inactivation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Druce, J.; Garcia, K.; Tran, T.; Papadakis, G.; Birch, C. Evaluation of Swabs, Transport Media, and Specimen Transport Conditions for Optimal Detection of Viruses by PCR. J. Clin. Microbiol. 2012, 50, 1064–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, J.J.; Billetdeaux, E.; Skodack-Jones, L.; Carroll, K.C. Evaluation of three Copan viral transport systems for the recovery of cultivatable, clinical virus isolates. Diagn. Microbiol. Infect. Dis. 2003, 45, 191–197. [Google Scholar] [CrossRef]
- Moran, A.; Beavis, K.G.; Matushek, S.M.; Ciaglia, C.; Francois, N.; Tesic, V.; Love, N. Detection of SARS-CoV-2 by Use of the Cepheid Xpert® Xpress SARS-CoV-2 and Roche Cobas SARS-CoV-2 Assays. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [Green Version]
- Moyo, S.; Mohammed, T.; Wirth, K.E.; Prague, M.; Bennett, K.; Holme, M.P.; Mupfumi, L.; Sebogodi, P.; Moraka, N.O.; Boleo, C.; et al. Point-of-Care Cepheid Xpert® HIV-1 Viral Load Test in Rural African Communities Is Feasible and Reliable. J. Clin. Microbiol. 2016, 54, 3050–3055. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.M.; Kline, J.; May, L.S.; Harnett, G.E.; Gibson, J.; Liang, S.Y.; Rafique, Z.; Rodriguez, C.A.; McGann, K.M.; Gaydos, C.A.; et al. Accurate PCR Detection of Influenza A/B and Respiratory Syncytial Viruses by Use of Cepheid Xpert® Flu+RSV Xpress Assay in Point-of-Care Settings: Comparison to Prodesse ProFlu+. J. Clin. Microbiol. 2017, 56. [Google Scholar] [CrossRef] [Green Version]
- Automatic Class III Designation for PrimeStore MTM. Decision Summary of DEN170029; United States Food and Drug Administration Reports; Longhorn Vaccines and Diagnostics, Limited Liability Company: Silver Spring, MD, USA, 2018.
- Daum, L.T.; Schuman, R.; Sei, C.; Rikhi, N.; Mesadieu, A.; Gerald, F. Real-time PCR of whole blood specimens transported in PrimeStore MTM® to detect and monitor MTB bacteremia. Int. J. Infect. Dis. 2016, 45, 392. [Google Scholar] [CrossRef] [Green Version]
- Daum, L.T.; Worthy, S.A.; Yim, K.C.; Nogueras, M.; Schuman, R.F.; Choi, Y.W.; Fischer, G.W. A clinical specimen collection and transport medium for molecular diagnostic and genomic applications. Epidemiol. Infect. 2011, 139, 1764–1773. [Google Scholar] [CrossRef] [Green Version]
- Daum, L.T.; Fourie, P.B.; Peters, R.P.H.; Rodriguez, J.D.; Worthy, S.A.; Khubbar, M.; Bhattacharyya, S.; Gradus, M.S.; Mboneni, T.; Marubini, E.E.; et al. Xpert® MTB/RIF detection of Mycobacterium tuberculosis from sputum collected in molecular transport medium. Int. J. Tuberc. Lung. Dis. 2016, 20, 1118–1124. [Google Scholar] [CrossRef]
- Bimba, J.S.; Lawson, L.; Kontogianni, K.; Edwards, T.; Ekpenyong, B.E.; Dodd, J.; Adams, E.R.; Sloan, D.J.; Creswell, J.; Dominguez, J.; et al. PrimeStore MTM and OMNIgene Sputum for the Preservation of Sputum for Xpert MTB/RIF Testing in Nigeria. J. Clin. Med. 2019, 8, 2146. [Google Scholar] [CrossRef] [Green Version]
- Copan Diagnostic Incorporated. 510(k) Pre-Market Notification; Substantial Equivalence Determination Decision Summary (Decision Date: 7 December 2004); Copan Universal Transport Medium (UTM-RT) System, Number K042970 (Application Date: 28 October 2004); COPAN Diagnostics Inc.: North Attleboro, MA, USA, 2004. [Google Scholar]
- Auerswald, H.; Yann, S.; Dul, S.; In, S.; Dussart, P.; Martin, N.J.; Karlsson, E.A.; Garcia-Rivera, J.A. Assessment of Inactivation Procedures for SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Whitehead, K.; Srinivasan, V.; McKinney, J.; Rubino, J.R.; Ripley, M.; Jones, C.; Nims, R.W.; Charlesworth, B. Microbicidal actives with virucidal efficacy against SARS-CoV-2. Am. J. Infect. Control 2020, 48, 972–973. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Yu, B.; Zhang, J.; Wu, H.; Zhou, X.; Yao, H.; Liu, F.; Lu, X.; Cheng, L.; Jiang, M.; et al. Methylene blue photochemical treatment as a reliable SARS-CoV-2 plasma virus inactivation method for blood safety and convalescent plasma therapy for the COVID-19 outbreak. Res. Sq. 2020. in review. Available online: https://www.researchsquare.com/article/rs-17718/v1 (accessed on 17 March 2020).
- Kratzel, A.; Todt, D.; V’kovski, P.; Steiner, S.; Gultom, M.L.; Thao, T.T.N.; Ebert, N.; Holwerda, M.; Steinmann, J.; Niemeyer, D.; et al. Efficient inactivation of SARS-CoV-2 by WHO-recommended hand rub formulations and alcohols. bioRxiv 2020. [Google Scholar] [CrossRef]
- Lista, M.J.; Page, R.; Sertkaya, H.; Matos, P.; Ortiz-Zapater, E.; Maguire, T.J.A.; Poulton, K.; O’Byrne, A.; Bouton, C.; Dickenson, R.E.; et al. Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation. medRxiv 2020. [Google Scholar] [CrossRef]
- Pan, Y.; Long, L.; Zhang, D.; Yuan, T.; Cui, S.; Yang, P.; Wang, Q.; Ren, S. Potential False-Negative Nucleic Acid Testing Results for Severe Acute Respiratory Syndrome Coronavirus 2 from Thermal Inactivation of Samples with Low Viral Loads. Clin. Chem. 2020, 66, 794–801. [Google Scholar] [CrossRef] [Green Version]
- Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R.N. Evaluation of heating and chemical protocols for inactivating SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Rabe, B.A.; Cepko, C. SARS-CoV-2 Detection Using an Isothermal Amplification Reaction and a Rapid, Inexpensive Protocol for Sample Inactivation and Purification. medRxiv 2020. [Google Scholar] [CrossRef]
- Wang, T.; Lien, C.; Liu, S.; Selveraj, P. Effective Heat Inactivation of SARS-CoV-2. medRxiv 2020. [Google Scholar] [CrossRef]
- Caly, L.; Druce, J.; Roberts, J.; Bond, K.; Tran, T.; Kostecki, R.; Yoga, Y.; Naughton, W.; Taiaroa, G.; Seemann, T.; et al. Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med. J. Aust. 2020, 212, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, B.; Burnouf, T.; McIntosh, R.; Padilla, A.; Thorpe, R.; van Anken, W. Guidelines on Viral Inactivation and Removal Procedures Intended to Assure the Viral Safety of Human Blood Plasma Products; Annex 4:150–224. 924; World Health Organisation (WHO): Geneva, Switzerland, 2004. [Google Scholar]
- Burton, J.E.; Easterbrook, L.; Pitman, J.; Anderson, D.; Roddy, S.; Bailey, D.; Vipond, R.; Bruce, C.B.; Roberts, A.D. The effect of a non-denaturing detergent and a guanidinium-based inactivation agent on the viability of Ebola virus in mock clinical serum samples. J. Virol. Methods 2017, 250, 34–40. [Google Scholar] [CrossRef]
- Corman, V.; Bleicker, T.; Brünick, S.; Drosten, C. Diagnostic Detection of 2019-nCoV by Real-Time RT-PCR (Protocol and Preliminary Evaluation); Charité Universitätsmedizin Berlin, Institute of Virology: Berlin, Germany, 2020. [Google Scholar]
- Hierholzer, J.C.; Killington, R.A. Virus isolation and quantitation. In Virology Methods Manual; Elsevier: Amsterdam, The Netherlands, 1996; pp. 25–46. ISBN 978-0-12-465330-6. [Google Scholar]
- Pujadas, E.; Chaudhry, F.; McBride, R.; Richter, F.; Zhao, S.; Wajnberg, A.; Nadkarni, G.; Glicksberg, B.S.; Houldsworth, J.; Cordon-Cardo, C. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med. 2020, 8, E70. [Google Scholar] [CrossRef]
- Chan, J.F.-W.; Yip, C.C.-Y.; To, K.K.-W.; Tang, T.H.-C.; Wong, S.C.-Y.; Leung, K.-H.; Fung, A.Y.-F.; Ng, A.C.-K.; Zou, Z.; Tsoi, H.-W.; et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assay | Test | Condition | Viral Load (TCID50/mL) | Averaged Viable Cells Counted | Cytopathic Effect (CPE) | SARS-CoV-2 (PCR Detectable) |
---|---|---|---|---|---|---|
A (WHO) | Assay controls | Positive control | 1.41 × 108 | 591 | + | + |
Positive (assay) control—untouched | ND | 551 | + | + | ||
Toxicity controls | Primestore MTM | 4.46 × 103 * | 1150 | − | − | |
COPAN (eNAT) | 7.92 × 103 * | 1019 | − | − | ||
Kit control (AVL) | 7.92 × 103 * | 1025 | − | − | ||
COPAN (UTM) | 1.41 × 102 * | 1010 | − | − | ||
CV19-UTM | 7.92 × 102 * | 1140 | − | − | ||
Molecular test media | Primestore MTM | 4.46 × 103 | 1046 | − | − | |
Kit control (AVL) | 7.92 × 103 | 1040 | − | − | ||
COPAN (eNAT) | 7.92 × 103 | 991 | − | − | ||
Viral transport media | COPAN (UTM) | 2.51 × 106 | 610 | + | + | |
CV-19 (UTM) | 4.46 × 108 | 753 | + | + | ||
B (BEx) | Assay controls | Negative control | NR | 974 | − | − |
Positive control | 4.35 × 106 | 575 | + | + | ||
Positive (assay) control—untouched | 2.90 × 106 | 630 | + | + | ||
Molecular test media | Primestore MTM | NR | 1046 | − | − | |
Kit control (AVL) | NR | 912 | − | − | ||
COPAN (eNAT) | NR | 1033 | − | − | ||
Viral transport media | COPAN (UTM) | 4.36 × 106 | 514 | + | + | |
CV-19 (UTM) | 1.94 × 106 | 692 | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Bockel, D.; Munier, C.M.L.; Turville, S.; Badman, S.G.; Walker, G.; Stella, A.O.; Aggarwal, A.; Yeang, M.; Condylios, A.; Kelleher, A.D.; et al. Evaluation of Commercially Available Viral Transport Medium (VTM) for SARS-CoV-2 Inactivation and Use in Point-of-Care (POC) Testing. Viruses 2020, 12, 1208. https://doi.org/10.3390/v12111208
van Bockel D, Munier CML, Turville S, Badman SG, Walker G, Stella AO, Aggarwal A, Yeang M, Condylios A, Kelleher AD, et al. Evaluation of Commercially Available Viral Transport Medium (VTM) for SARS-CoV-2 Inactivation and Use in Point-of-Care (POC) Testing. Viruses. 2020; 12(11):1208. https://doi.org/10.3390/v12111208
Chicago/Turabian Stylevan Bockel, David, C. Mee Ling Munier, Stuart Turville, Steven G. Badman, Gregory Walker, Alberto Ospina Stella, Anupriya Aggarwal, Malinna Yeang, Anna Condylios, Anthony D. Kelleher, and et al. 2020. "Evaluation of Commercially Available Viral Transport Medium (VTM) for SARS-CoV-2 Inactivation and Use in Point-of-Care (POC) Testing" Viruses 12, no. 11: 1208. https://doi.org/10.3390/v12111208