Resource Allocation, Pit Quality, and Early Survival of Seedlings Following Two Motor-Manual Pit-Drilling Options
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location, Equipment Description, and Experimental Layout
2.2. Data Collection
2.3. Data Processing and Analysis
3. Results
3.1. Physical Condition of Soils in the Field Tests
3.2. Time and Fuel Consumption
3.3. Physical Quality of the Pits
3.4. Survival Rate and Survival Probability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abrudan, I.V. Împăduriri; Transilvania University Press: Braşov, Romania, 2006; p. 201. [Google Scholar]
- Niuwenhuis, M.; Egan, D. An evaluation and comparison of mechanised and manual tree planting on afforestation and reforestation sites in Ireland. Int. J. For. Eng. 2002, 3, 11–23. [Google Scholar] [CrossRef]
- Luoranen, J.; Rikala, R. Field performance of Scots pine (Pinus sylvestris L.) seedlings planted in disc trenched or mounded sites over an extended planting season. New For. 2013, 44, 147–162. [Google Scholar] [CrossRef]
- Laine, T.; Saarinen, V.-M. Comparative study of the Risutec automatic plant container (APC) and Bracke planting devices. Silva Fenn. 2014, 48. [Google Scholar] [CrossRef]
- De Franceschi, J.P.; Steele, T. Labor Productivity for Manual Tree Planting in Manitoba. Available online: http://cfs.nrcan.gc.ca/bookstore_pdfs/22928.pdf (accessed on 13 September 2018).
- McDonald, T.P.; Fulton, J.P.; Darr, M.J.; Gallagher, T.V. Evaluation of a system to spatially monitor hand planting of pine seedlings. Comput. Electron. Agric. 2008, 64, 173–182. [Google Scholar] [CrossRef]
- Luoranen, J.; Rikala, R.; Smolander, H. Machine planting of Norway spruce by Bracke and Ecoplanter: An evaluation of soil preparation, planting method and seedling performance. Silva Fenn. 2011, 45, 341–357. [Google Scholar] [CrossRef]
- Luoranen, J.; Saksa, T.; Lappi, J. Seedling, planting site and weather factors affecting the success of autumn plantings in Norway spruce and Scots pine seedlings. For. Ecol. Manag. 2018, 419, 79–90. [Google Scholar] [CrossRef]
- Ersson, B.T.; Laine, T.; Saksa, T. Mechanized tree planting in Sweden and Finland: Current state and key factors for future growth. Forests 2018, 9, 370. [Google Scholar] [CrossRef]
- Britto, P.; Silva Lopes, E.; De Laat, E.F.; Fiedler, N.C. Biomechanical evaluation in workers of different statures at planting and fertilizing forest activities. For. Sci. 2014, 42, 191–196. [Google Scholar]
- Granzow, F.R.; Schall, M.C., Jr.; Smidt, M.F.; Chen, H.; Fethke, N.B.; Huangfu, R. Characterizing exposure to physical risk factors among reforestation hand planters in the Southeastern United States. Appl. Ergon. 2018, 66, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cheţa, M.; Marcu, M.V.; Borz, S.A. Workload, exposure to noise and risk of musculoskeletal disorders: A case study of motor-manual tree felling and processing in poplar clear cuts. Forests 2018, 9, 300. [Google Scholar] [CrossRef]
- Guedes, I.L.; Minette, L.J.; Da Silva, E.P.; Amaury, P.; De Souza, A.P. Assessment of the noise and vibration levels during semi-mechanized pit digging in mountainous region. Engenharia na Agricultura 2010, 18, 9–12. [Google Scholar] [CrossRef]
- South, D.B.; Jackson, D.P.; Starkey, T.E.; Enebak, S.A. Planting deep increases early survival and growth of Pinus echinata seedlings. For. Sci. 2012, 5, 33–41. [Google Scholar] [CrossRef]
- Luoranen, J.; Viiri, H. Deep planting decreases risk of drought damage and increases growth of Norway spruce container seedlings. New For. 2016, 47. [Google Scholar] [CrossRef]
- Heiskanen, J.; Saksa, T.; Luoranen, J. Soil preparation method affects outplanting success of Norway spruce container seedlings on till soils susceptible to frost heave. Silva Fenn. 2013, 47, 17. [Google Scholar] [CrossRef]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; p. 347. ISBN 9781118422342. [Google Scholar]
- Ampoorter, E.; De Frenne, P.; Hermy, M.; Verheyen, K. Effects of soil compaction on growth and survival of tree saplings: A meta-analysis. Basic Appl. Ecol. 2011, 12. [Google Scholar] [CrossRef]
- Sutton, R.F. Soil Properties and Root Development in Forest Trees: A Review. Forestry Canada. Information Report O-X-413. Available online: http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/9092.pdf (accessed on 12 September 2018).
- Abrudan, I.V. A decade of non-state administration of forests in Romania: Achievements and challenges. Int. For. Rev. 2012, 14, 275–284. [Google Scholar] [CrossRef]
- Şofletea, N.; Curtu, L. Dendrologie, 2nd ed.; Pentru Viaţă Publishing House: Braşov, Romania, 2008; p. 418. ISBN 978-973-85874-4-1. [Google Scholar]
- Osman, K.T. Forest Soils Properties and Management; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013; p. 210. ISBN 978-3-319-02540-7. [Google Scholar]
- Târziu, D. Pedologie și Stațiuni Forestiere; Ceres Publishing House: București, Romania, 1997; p. 488. ISBN 973-40-0391-7. [Google Scholar]
- Björheden, R.; Apel, K.; Shiba, M.; Thompson, M. IUFRO Forest Work Study Nomenclature; Swedish University of Agricultural Science, Department of Operational Efficiency: Grapenberg, Sweden, 1995; p. 16. [Google Scholar]
- Borz, S.A.; Birda, M.; Ignea, G.; Popa, B.; Campu, V.R.; Iordache, E.; Derczeni, R.A. Efficiency of a Woody 60 processor attached to a Mounty 4100 tower yarder when processing coniferous timber from thinning operations. Ann. For. Res. 2014, 57, 333–345. [Google Scholar] [CrossRef]
- Acuna, M.; Bigot, M.; Guerra, S.; Hartsough, B.; Kanzian, C.; Kärhä, K.; Lindroos, O.; Magagnotti, N.; Roux, S.; Spinelli, R.; et al. Good Practice Guidelines for Biomass Production Studies; Magagnotti, N., Spinelli, R., Eds.; CNR IVALSA: Sesto Fiorentino, Italy, 2012. [Google Scholar]
- Ignea, G.; Ghaffaryian, M.R.; Borz, S.A. Impact of operational factors on fossil energy inputs in motor-manual tree felling and processing: Results of two case studies. Ann. For. Res. 2017, 60, 161–172. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatisical Analysis, 5nd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2010; p. 931. ISBN 978-0-13-100845-5. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley& Sons, Inc.: Hoboken, NJ, USA, 2000; p. 369. ISBN 0-471-35632-8. [Google Scholar]
- Florea, N.; Munteanu, I. Sistemul Român de Taxonomie a Solurilor; Estfalia Publishing House: București, Romania, 2003; p. 182. ISBN 97385841-7-5. [Google Scholar]
- Oprea, I. Tehnologia Exploatării Lemnului; Transilvania University Press: Braşov, Romania, 2008; p. 273. ISBN 978-973-598-301-7. [Google Scholar]
- Perry, T.O. Tree Roots: Facts and Fallacies. Available online: http://arnoldia.arboretum.harvard.edu/pdf/articles/1989-49-4-tree-roots-facts-and-fallacies.pdf (accessed on 12 September 2018).
- Buitrago, M.; Paquette, A.; Thiffault, N.; Bélanger, N.; Messier, C. Early performance of planted hybrid larch: Effects of mechanical site preparation and planting depth. New For. 2015, 46, 319–337. [Google Scholar] [CrossRef] [Green Version]
- Harrington, T.B.; Howell, K.D. Planting cost, survival, and growth one to three years after establishing loblolly pine seedlings with straight, deformed or pruned taproots. New For. 1998, 15, 193–204. [Google Scholar] [CrossRef]
- South, D.B.; Rakestraw, J.L.; Lowerts, G.A. Early gains from planting large-diameter seedlings and intensive management are additive for loblolly pine. New For. 2001, 22, 97–110. [Google Scholar] [CrossRef]
- Anon, V.; Hartley, S.; Wittmer, H.U. Survival and growth of planted seedlings of three native tree species in urban forest restoration in Wellington, New Zealand. N. Z. J. Ecol. 2015, 39, 170–178. [Google Scholar]
- Hallsby, G.; Örlander, G. A comparison of mounding and inverting to establish Norway spruce on podzolic soils in Sweden. Forestry 2004, 77, 107–117. [Google Scholar] [CrossRef] [Green Version]
Field Test | Date of Field Tests Composition | Ground Slope (°) | Altitude (m) | Location | Number of Observations | |
---|---|---|---|---|---|---|
D150 | D200 | |||||
FT1 | 26 March 2015 | 8 | 104 | N 46°09′22.94′′ E 21°15′46.06′′ | 50 | 116 |
70% Common oak | ||||||
Quercus robur L. | ||||||
30% Ash | ||||||
Fraxinus excelsior L. | ||||||
FT2 | 9 March 2015 | 10 | 107 | N 46°09′58.68′′ E 21°15′45.71′′ | 50 | 87 |
60% Common oak | ||||||
Quercus robur L. | ||||||
20% Sweet cherry | ||||||
Prunus avium L. | ||||||
20% Ash | ||||||
Fraxinus excelsior L. | ||||||
FT3 | 30 March 2016 | 18 | 386 | N 46°02′17.72′′ E 21°48′25.17′′ | 50 | 105 |
100% Sessile oak | ||||||
Quercus petraea (Matt.) Liebl. | ||||||
FT4 | 25 March 2016 | 12 | 112 | N 46°09′47.23′′ E 21°14′34.42′′ | 50 | 111 |
100% Black walnut | ||||||
Juglans nigra L. | ||||||
FT5 | 22 April 2016 | 32 | 1280 | N 45°17′43.72′′ E 22°49′54.53′′ | 50 | 113 |
100% Norway spruce | ||||||
Picea abies (P. excelsa (Lam.) Link.) | ||||||
FT6 | 06.04.2017 | 28 | 420 | N 45°56′24.87′′ E 22°23′26.12′′ | 50 | 75 |
60% Beech | ||||||
Fagus sylvatica L. | ||||||
40% Sessile oak | ||||||
Quercus petraea (Matt.) Liebl. | ||||||
FT7 | 28 April 2017 | 30 | 360 | N 45°56′35.00′′ E 22°23′27.50′′ | 50 | 74 |
60% Beech | ||||||
Fagus sylvatica L. | ||||||
20% Sessile oak | ||||||
Quercus petraea (Matt.) Liebl. | ||||||
20% Sweet cherry | ||||||
Prunus avium L. | ||||||
FT8 | 30 March 2017 | 24 | 185 | N 46°00′29.26′′ E 21°07′59.51′′ | 50 | 106 |
70% Common oak | ||||||
Quercus robur L. | ||||||
30% Sweet cherry | ||||||
Prunus avium L. | ||||||
FT9 | 24 April 2017 | 22 | 290 | N 46°55′36.54′′ E 21°59′10.00′′ | 50 | 60 |
50% Turkey oak | ||||||
Quercus cerris L. | ||||||
50% Sessile oak | ||||||
Quercus petraea (Matt.) Liebl. |
Field Test and Soil Type | Physical Properties | Sampling Depth | ||
---|---|---|---|---|
0–10 cm | 10–20 cm | 20–30 cm | ||
FT1 (Mollic Gleysol) | Moisture (%) | 24.11 ± 1.20 | 22.73 ± 1.00 | 20.09 ± 0.80 |
Bulk density (g/cm3) | 1.62 ± 0.23 | 1.69 ± 0.19 | 1.72 ± 0.06 | |
Total porosity (%) | 37.89 ± 2.51 | 37.43 ± 2.24 | 36.45 ± 1.15 | |
FT2 (Vertic Fluvisol) | Moisture (%) | 20.75 ± 0.90 | 19.46 ± 0.70 | 17.38 ± 0.50 |
Bulk density (g/cm3) | 1.70 ± 0.02 | 1.75 ± 0.01 | 1.73 ± 0.00 | |
Total porosity (%) | 36.97 ± 1.32 | 35.73 ± 1.11 | 35.19 ± 0.92 | |
FT3 (Haplic Luvisol) | Moisture (%) | 22.43 ± 0.80 | 21.10 ± 0.50 | 8.74 ± 0.30 |
Bulk density (g/cm3) | 1.69 ± 0.05 | 1.71 ± 0.03 | 1.73 ± 0.01 | |
Total porosity (%) | 37.43 ± 1.05 | 36.31 ± 0.96 | 36.09 ± 0.53 | |
FT4 (Dystric Fluvisol) | Moisture (%) | 23.35 ± 0.50 | 21.68 ± 0.30 | 19.54 ± 0.10 |
Bulk density (g/cm3) | 1.64 ± 0.01 | 1.58 ± 0.01 | 1.51 ± 0.00 | |
Total porosity (%) | 35.54 ± 2.52 | 33.28 ± 2.01 | 31.25 ± 1.85 | |
FT5 (Leptic-entic Podzol) | Moisture (%) | 23.54 ± 0.80 | 21.37 ± 1.10 | 19.20 ± 0.70 |
Bulk density (g/cm3) | 0.82 ± 0.12 | 1.16 ± 0.24 | 1.51 ± 0.11 | |
Total porosity (%) | 46.25 ± 1.31 | 42.43 ± 1.14 | 39.88 ± 1.05 | |
FT6 (Endolepti-eutric Cambisol) | Moisture (%) | 24.58 ± 0.50 | 22.36 ± 0.40 | 20.81 ± 0.40 |
Bulk density (g/cm3) | 1.20 ± 0.02 | 1.22 ± 0.01 | 1.23 ± 0.00 | |
Total porosity (%) | 61.35 ± 1.01 | 59.30 ± 0.86 | 56.60 ± 0.67 | |
FT7 (Eutric Cambisol) | Moisture (%) | 22.68 ± 0.4 | 20.52 ± 0.20 | 18,05 ± 0.20 |
Bulk density (g/cm3) | 1.38 ± 0.03 | 1.35 ± 0.04 | 1.28 ± 0.03 | |
Total porosity (%) | 52.48 ± 0.30 | 50.16 ± 0.20 | 48.16 ± 0.20 | |
FT8 (Vertic Chernozem) | Moisture (%) | 22.68 ± 0.40 | 20.52 ± 0.20 | 18,05 ± 0.20 |
Bulk density (g/cm3) | 1.38 ± 0.03 | 1.35 ± 0.04 | 1.28 ± 0.03 | |
Total porosity (%) | 52.48 ± 0.30 | 50,16 ± 0.20 | 48.16 ± 0.20 | |
FT9 (Stagnic Luvisol) | Moisture (%) | 18.84 ± 0.50 | 18.22 ± 0.30 | 17.74 ± 0.20 |
Bulk density (g/cm3) | 1.14 ± 0.03 | 1.46 ± 0.02 | 1.54 ± 0.02 | |
Total porosity (%) | 58.43 ± 0.50 | 46.19 ± 0.40 | 44.41 ± 0.20 |
Field Test, Drill Size, and Time Consumption Category | Descriptive Statistics | |||||||
---|---|---|---|---|---|---|---|---|
N | Min (s) | Max (s) | Range (s) | Median (s) | Sum (s) | |||
FT1 | D150 | DT | 50 | 3.28 | 8.21 | 4.93 | 5.17 * | 270.35 |
MT | 50 | 1.19 | 4.52 | 3.33 | 2.32 | 129.73 | ||
D200 | DT | 116 | 7.01 | 19.50 | 12.49 | 11.84 * | 1357.07 | |
MT | 116 | 1.19 | 4.92 | 3.73 | 2.57 | 338.79 | ||
FT2 | D150 | DT | 50 | 7.82 | 66.30 | 58.48 | 20.32 * | 1170.99 |
MT | 50 | 3.34 | 5.98 | 2.64 | 4.91 | 236.13 | ||
D200 | DT | 87 | 8.19 | 26.80 | 18.61 | 11.08 * | 1043.70 | |
MT | 87 | 2.63 | 7.11 | 4.48 | 4.92 | 420.59 | ||
FT3 | D150 | DT | 50 | 4.58 | 8.09 | 3.51 | 5.91 * | 303.86 |
MT | 50 | 1.35 | 4.40 | 3.05 | 2.48 | 135.91 | ||
D200 | DT | 105 | 7.41 | 19.00 | 11.59 | 11.54 * | 1265.82 | |
MT | 105 | 1.35 | 7.70 | 6.35 | 2.54 | 290.02 | ||
FT4 | D150 | DT | 50 | 4.32 | 62.80 | 58.48 | 16.82 * | 995.99 |
MT | 50 | 3.02 | 7.70 | 4.68 | 4.35 | 219.73 | ||
D200 | DT | 111 | 6.04 | 16.78 | 10.74 | 8.99 * | 1090.96 | |
MT | 111 | 2.76 | 7.70 | 4.94 | 4.44 | 506.93 | ||
FT5 | D150 | DT | 50 | 3.61 | 9.59 | 5.98 | 4.64 * | 253.68 |
MT | 50 | 1.80 | 4.75 | 2.95 | 3.18 | 156.87 | ||
D200 | DT | 113 | 4.81 | 12.84 | 8.03 | 6.69 * | 835.20 | |
MT | 113 | 1.52 | 4.78 | 3.26 | 3.54 | 381.93 | ||
FT6 | D150 | DT | 50 | 6.02 | 8.95 | 2.93 | 6.77 * | 352.48 |
MT | 50 | 2.57 | 5.40 | 2.83 | 4.20 | 211.22 | ||
D200 | DT | 75 | 8.02 | 11.93 | 3.91 | 9.17 * | 711.53 | |
MT | 75 | 1.74 | 5.98 | 4.24 | 4.33 | 328.3 | ||
FT7 | D150 | DT | 50 | 5.21 | 7.89 | 2.68 | 6.67 * | 333.18 |
MT | 50 | 1.74 | 5.70 | 3.96 | 4.48 | 217.48 | ||
D200 | DT | 74 | 6.95 | 10.52 | 3.57 | 8.91 * | 659.50 | |
MT | 74 | 1.74 | 5.98 | 4.24 | 4.61 | 331.66 | ||
FT8 | D150 | DT | 50 | 3.71 | 11.15 | 7.43 | 6.52 * | 340.61 |
MT | 50 | 1.24 | 4.74 | 3.50 | 2.86 | 141.02 | ||
D200 | DT | 106 | 4.95 | 14.86 | 9.91 | 8.59 * | 943.96 | |
MT | 106 | 2.00 | 4.74 | 2.74 | 2.81 | 306.78 | ||
FT9 | D150 | DT | 50 | 6.17 | 13.34 | 7.17 | 9.51 * | 481.37 |
MT | 50 | 1.33 | 6.15 | 4.82 | 2.45 | 127.11 | ||
D200 | DT | 60 | 8.22 | 18.49 | 10.27 | 12.97 * | 787.83 | |
MT | 60 | 1.33 | 7.71 | 6.38 | 2.26 | 160.10 |
Field Test | Treatment | Number of Observations | Resistance to Penetration (RP) | Shear Strength (SS) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(daN × cm−2) | (daN × cm−2) | |||||||||
h5 | h15 | h25 | b | h5 | h15 | h25 | b | |||
FT1 | D150 | 50 | 1.30 | 1.50 * | 1.75 * | 2.00 * | 1.68 * | 2.25 * | 2.40 * | 2.00 * |
D200 | 116 | 1.20 | 2.15 * | 2.55 * | 1.30 * | 3.00 * | 2.95 * | 2.75 * | 1.30 * | |
FT2 | D150 | 50 | 2.05 | 2.25 | 2.53 | 2.60 | 2.05 * | 2.48 * | 2.53 * | 2.00 * |
D200 | 87 | 1.95 | 2.50 | 2.55 | 2.60 | 2.80 * | 3.00 * | 3.00 * | 2.50 * | |
FT3 | D150 | 50 | 0.90 * | 1.10 * | 1.30 * | 0.90 * | 1.10 * | 1.50 * | 1.85 * | 1.40 |
D200 | 105 | 1.79 * | 2.25 * | 2.55 * | 1.20 * | 2.54 * | 3.15 * | 3.15 * | 1.30 | |
FT4 | D150 | 50 | 1.85 * | 2.15 * | 2.33 * | 2.40 * | 2.20 * | 2.60 * | 2.70 * | 2.15 |
D200 | 111 | 2.25 * | 2.85 * | 2.95 * | 2.90 * | 2.34 * | 2.37 * | 2.37 * | 2.25 | |
FT5 | D150 | 50 | 0.83 * | 1.41 * | 1.71 * | 0.79 * | 1.29 * | 1.35 * | 1.14 * | 0.79 * |
D200 | 113 | 0.95 * | 1.90 * | 2.30 * | 1.05 * | 1.80 * | 1.75 * | 1.55 * | 1.10 * | |
FT6 | D150 | 50 | 1.13 * | 1.50 * | 1.50 * | 1.61 * | 1.67 * | 1.74 * | 1.76 * | 1.43 * |
D200 | 75 | 1.50 * | 1.95 * | 2.00 * | 2.15 * | 1.90 * | 2.10 * | 2.35 * | 1.85 * | |
FT7 | D150 | 50 | 1.60 * | 2.20 * | 2.30 * | 2.25 | 2.05 | 2.15 | 2.15 | 2.00 |
D200 | 74 | 2.25 * | 2.50 * | 2.70 * | 2.45 | 1.90 | 2.00 | 1.92 | 1.70 | |
FT8 | D150 | 50 | 1.90 * | 2.65 | 3.10 | 1.50 * | 2.90 | 3.55 | 3.45 * | 1.65 * |
D200 | 106 | 2.25 * | 2.70 | 3.00 | 1.65 * | 2.99 | 3.60 | 3.63 * | 1.75 * | |
FT9 | D150 | 50 | 4.15 * | 4.28 * | 4.40 * | 4.15 * | 3.53 | 3.70 | 3.70 | 3.67 |
D200 | 60 | 4.50 * | 4.50 * | 4.50 * | 4.38 * | 3.60 | 3.80 | 3.80 | 3.77 | |
ALL | D150 | 450 | 1.55 * | 1.95 * | 2.10 * | 1.90 | 2.00 * | 2.32 * | 2.35 * | 1.70 |
D200 | 847 | 1.75 * | 2.40 * | 2.65 * | 1.75 | 2.55 * | 2.82 * | 2.75 * | 1.65 |
Field Test | Drill Size | Number of Survived Seedlings | Number of Died Seedlings | Survival Rate (%) | Comparison Tests and Diagnose | ||
---|---|---|---|---|---|---|---|
F | χ2 | Significant? | |||||
FT1 | D150 | 44 | 6 | 88.00 | p = 0.388 | χ2 = 0.765, p = 0.382 * | no |
D200 | 107 | 9 | 92.24 | ||||
FT2 | D150 | 45 | 5 | 90.00 | p = 0.497 | χ2 = 0.849, p = 0.357 * | no |
D200 | 82 | 5 | 94.25 | ||||
FT3 | D150 | 45 | 5 | 90.00 | p = 0.334 | χ2 = 0.944, p = 0.331 * | no |
D200 | 99 | 6 | 94.29 | ||||
FT4 | D150 | 46 | 4 | 92.00 | p = 0.256 | χ2 = 1.411, p = 0.235 * | no |
D200 | 107 | 4 | 96.40 | ||||
FT5 | D150 | 47 | 3 | 94.00 | p = 1.000 | χ2 = 0.032, p = 0.859 * | no |
D200 | 107 | 6 | 94.69 | ||||
FT6 | D150 | 46 | 4 | 92.00 | p = 1.000 | χ2 = 0.080, p = 0.778 * | no |
D200 | 70 | 5 | 93.33 | ||||
FT7 | D150 | 42 | 8 | 84.00 | p = 0.797 * | χ2 = 0.149, p = 0.700 | no |
D200 | 64 | 10 | 86.49 | ||||
FT8 | D150 | 45 | 5 | 90.00 | p = 0.769 | χ2 = 0.095, p = 0.758 * | no |
D200 | 97 | 9 | 91.51 | ||||
FT9 | D150 | 24 | 26 | 48.00 | p = 0.125 * | χ2 = 2.607, p = 0.106 | no |
D200 | 38 | 22 | 63.33 | ||||
ALL | D150 | 384 | 66 | 85.33 | p < 0.001 * | χ2 = 22.150, p < 0.001 | yes |
D200 | 771 | 76 | 91.03 |
Parameter | Coefficients (β) | Standard Error | Wald | p-Value | Exponential (β) | Lower | Upper |
---|---|---|---|---|---|---|---|
Intercept | 3.497 | 0.530 | 43.49 | <0.001 | 33.025 | - | - |
PT | 2.384 | 0.540 | 19.49 | <0.001 | 10.851 | 3.765 | 31.279 |
RPh5 | −2.833 | 0.371 | 58.45 | <0.001 | 0.059 | 0.028 | 0.122 |
RPh15 | 1.108 | 0.461 | 5.78 | =0.016 | 3.027 | 1.226 | 7.477 |
RPh25 | −0.624 | 0.306 | 4.15 | =0.042 | 0.536 | 0.294 | 0.977 |
RPb | 0.850 | 0.170 | 24.86 | <0.001 | 2.338 | 1.675 | 3.265 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boja, N.; Boja, F.; Teusdea, A.; Vidrean, D.; Marcu, M.V.; Iordache, E.; Duţă, C.I.; Borz, S.A. Resource Allocation, Pit Quality, and Early Survival of Seedlings Following Two Motor-Manual Pit-Drilling Options. Forests 2018, 9, 665. https://doi.org/10.3390/f9110665
Boja N, Boja F, Teusdea A, Vidrean D, Marcu MV, Iordache E, Duţă CI, Borz SA. Resource Allocation, Pit Quality, and Early Survival of Seedlings Following Two Motor-Manual Pit-Drilling Options. Forests. 2018; 9(11):665. https://doi.org/10.3390/f9110665
Chicago/Turabian StyleBoja, Nicuşor, Florinel Boja, Alin Teusdea, Dan Vidrean, Marina Viorela Marcu, Eugen Iordache, Cristian Ionuţ Duţă, and Stelian Alexandru Borz. 2018. "Resource Allocation, Pit Quality, and Early Survival of Seedlings Following Two Motor-Manual Pit-Drilling Options" Forests 9, no. 11: 665. https://doi.org/10.3390/f9110665
APA StyleBoja, N., Boja, F., Teusdea, A., Vidrean, D., Marcu, M. V., Iordache, E., Duţă, C. I., & Borz, S. A. (2018). Resource Allocation, Pit Quality, and Early Survival of Seedlings Following Two Motor-Manual Pit-Drilling Options. Forests, 9(11), 665. https://doi.org/10.3390/f9110665