Assessing Forest Classification in a Landscape-Level Framework: An Example from Central European Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamentals of the Czech Forest Ecosystem Classification
2.2. Data
2.2.1. Environmental and Soil Data
2.2.2. Climatic Data
2.2.3. Vegetation Data
2.3. Data Analysis
3. Results
4. Discussion
4.1. Natural Forest Areas
4.2. Forest Vegetation Zones
4.3. Potential of Improved Vegetation-Driven Classifications
4.4. Perspectives of Ecological Classifications
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Daubenmire, R. The roots of a concept (keynote). In Proceedings, Land Classifications Based on Vegetation: Applications for Resource Management, Moscow, ID, November 17–19, 1987; Ferguson, D.E., Morgan, P., Johnson, F.D., Eds.; U.S. Department of Agriculture Forest Service Intermountain Research Station: Ogden, UT, USA, 1989; pp. 3–6. [Google Scholar]
- Kusbach, A.; Long, J.N.; Van Miegroet, H.; Shultz, L.M. Fidelity and diagnostic species concepts in vegetation classification in the Rocky Mountains, Northern Utah, USA. Botany 2012, 90, 678–693. [Google Scholar] [CrossRef]
- Tüxen, R. Die Heutige Potentielle Natürliche Vegetation als Gegenstand der Vegetationskartierung; Angewandte Pflanzensoziologie 13; Bundesanstalt (Zentralstelle) für Vegetationskartierung: Stolzenau, Germany, 1956; p. 55. [Google Scholar]
- Zlatník, A. Nástin lesnické typologie na biogeocenologickém základu a rozlišení československých lesů podle skupin lesních typů (An overview of forest classification based on biogeocoenological principals and discrimination of Czechoslovakian forests by forest type s. In Pěstění lesů III (Forest silviculture III); Polanský, B., Ed.; Státni Zemědělské Nakladatelství Praha: Praha, Czechoslovakia, 1956; pp. 317–400. (In Czech) [Google Scholar]
- Küchler, A.W. The Potential Natural Vegetation of the Conterminous United States; Special Publication No. 36; American Geographical Society: New York, NY, USA, 1964; p. 116. [Google Scholar]
- Schlenker, G. Entwicklung des in Südwestdeutschland angewandten Verfahrens der forstlichen Standortskunde. In Standort, Wald und Waldwirtschaft in Oberschwaben: Ergebnisse einer Gemeinschaftsarbeit in Einzeldarstellungen; Arbeitsgemeinschaft Oberschwäbische Fichtenreviere: Stuttgart, Germany, 1964; pp. 5–26. [Google Scholar]
- Rowe, J.S. The common denominator of land classification in Canada: An ecological approach to mapping. In Proceedings of the Ecological Classification of Forest Land in Canada and Northwestern U.S.A., Vancouver, BC, Canada, 30 September–2 October 1977; U.S.A. Forest Ecology Working Group, Canadian Instite Forestry and Centre for Continuing Education, UBC: Vancouver, BC, Canada, 1978; pp. 195–198. [Google Scholar]
- Damman, A.W.H. The role of vegetation analysis in land classification. For. Chron. 1979, 55, 175–182. [Google Scholar] [CrossRef]
- Pfister, R.D.; Arno, S.F. Classifying forest habitat types based on potential climax vegetation. For. Sci. 1980, 26, 52–70. [Google Scholar]
- Barnes, B.V.; Pregitzer, K.S.; Spies, T.A.; Spooner, V.H. Ecological forest site classification. J. For. 1982, 80, 493–498. [Google Scholar]
- Pojar, J.; Klinka, K.; Meidinger, D.V. Biogeoclimatic ecosystem classification in British Columbia. For. Ecol. Manag. 1987, 22, 119–154. [Google Scholar] [CrossRef]
- Bailey, R.G. Ecoregions: The Ecosystem Geography of the Oceans and Continents; Springer: New York, NY, USA, 1998; p. 176. ISBN 0-387-98311-2. [Google Scholar]
- Cajander, A.K. The theory of forest types. Acta For. Fenn. 1926, 29, 1913–1929. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Pflanzensoziologie: Grundzüge der Vegetationskunde, 1st ed.; Biologische Studienbücher. 7; Julius Springer: Berlin, Germany, 1928; p. 330. [Google Scholar]
- Tansley, A.G. The use and abuse of vegetational concepts and terms. Ecology 1935, 16, 284–307. [Google Scholar] [CrossRef]
- Sukachev, V.N.; Dylis, N.V. Fundamentals of Forest Biogeocoenology; Translated from the Russian Edition (Moscow, 1964) by J. M. Maclennan; Oliver and Boyd: Edinburgh, UK, 1968; p. 672. [Google Scholar]
- Bissonette, J.A. Scale-sensitive ecological properties: Historical context, current meaning. In Wildlife and Landscape Ecology: Effects of Pattern and Scale; Bissonette, J.A., Ed.; Springer: New York, NY, USA, 1997; pp. 3–31. ISBN 978-1-4612-7338-7. [Google Scholar]
- Cleland, D.T.; Avers, P.E.; McNab, H.W.; Jensen, M.E.; Bailey, R.G.; King, T.; Russell, W.E. National hierarchy framework of ecological units. In Ecosystem Management: Applications for Sustainable Forest and Wildlife Resources; Boyce, M.S., Haney, A., Eds.; Yale University Press: New Heaven, CT, USA, 1997; pp. 181–200. [Google Scholar]
- Chen, J.; Brosofske, K.D.; Lafortezza, R. Ecology and Management of Forest Landscapes. In Patterns and Processes in Forest Landscapes; Lafortezza, R., Sanesi, G., Chen, J., Crow, T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 3–16. ISBN 978-1-4020-8503-1. [Google Scholar]
- Zlatník, A. Přehled Slovenských lesů Podle Skupin Lesních Typů (An Overview of Slovak Forests by Forest Types Groups); Spisy Vědecké Laboratoře Biogeocenologie a Typologie lesa Lesnické Fakulty Vysoké Školy Zemědělské v Brně; Lesnická Fakulta Vysoké školy Zemědělské v Brně: Brno, Czechoslovakia, 1959; p. 195. (In Czech) [Google Scholar]
- Plíva, K.; Žlábek, I. Přírodní Lesní Oblasti ČSR (Natural Forest Areas in the Czech Republic); Státní Zemědělské Nakladatelství Praha: Praha, Czechoslovakia, 1986; p. 313. (In Czech) [Google Scholar]
- Kilian, W.; Muller, F.; Starlinger, F. The Forest Growth Regions of Austria a Land Classification Based on Forest Ecology; FBVA Berichte: Wien, Austria, 1994. [Google Scholar]
- Dahdouh-Guebas, F.; Triest, L.; Verneirt, M. The importance of a hierarchical ecosystem classification for the biological evaluation and selection of least valuable sites. Impact Assess. Proj. Apprais. 1998, 16, 185–194. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G.; Frondoni, R. Defining and mapping typological models at the landscape scale. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2005, 139, 155–163. [Google Scholar] [CrossRef]
- Gauer, H.J.; Aldinger, E. Forest Ecologically-Based Nature Areas in Germany. Forest Growth Regions and Growth Districts with a 1:1,000,000 Map; Mitteilungen des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung: Freiburg, Germany, 2005. [Google Scholar]
- McNab, H.W.; Cleland, D.T.; Freeouf, J.A.; Keys, J.E.J.; Nowacki, G.J.; Carpenter, C.A. Description of Ecological Subregions: Sections of the Conterminous United States; United States Department of Agriculture: Washington, DC, USA, 2007; Volume 76B, p. 80.
- Townshend, E.; Pokharel, B.; Groot, A.; Pitt, D.; Dech, J.P. Modeling wood fibre length in black spruce (Picea mariana (Mill.) BSP) based on ecological land classification. Forests 2015, 6, 3369–3394. [Google Scholar] [CrossRef]
- Pyatt, G.; Ray, D.; Fletcher, J. An Ecological Site Classification for Forestry in Great Britain; Bulletin 124; Forestry Commission: Edinburg, UK, 2001; p. 74. ISBN 0855384182. [Google Scholar]
- Ray, D.; Xenakis, G.; Tene, A.; Black, K. Developing a site classification system to assess the impact of climate change on species selection in Ireland. Irish For. 2009, 66, 101–122. [Google Scholar]
- Plíva, K. Typologický Systém ÚHÚL (Forest Classification System of the Forest Management Institute); Ústav pro Hospodářskou Úpravu lesů Brandýs nad Labem: Brandýs nad Labem, Czechoslovakia, 1971; p. 90. (In Czech) [Google Scholar]
- Haeussler, S. Rethinking biogeoclimatic ecosystem classification for a changing world. Environ. Rev. 2011, 19, 254–277. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Franklin, S.B. Evaluation of an ecological land type classification system, Natchez Trace State Forest, western Tennessee, USA. Landsc. Urban Plan. 2000, 49, 179–190. [Google Scholar] [CrossRef]
- DeLong, C.S.; Griesbauer, H.; Mackenzie, W.; Foord, V. Corroboration of biogeoclimatic ecosystem classification climate zonation by spatially modelled climate data. BC J. Ecosyst. Manag. 2010, 10, 49–64. [Google Scholar]
- Chytrý, M.; Schaminée, J.H.J.; Schwabe, A. Vegetation survey: A new focus for Applied Vegetation Science. Appl. Veg. Sci. 2011, 14, 435–439. [Google Scholar] [CrossRef]
- Viewegh, J.; Kusbach, A.; Mikeska, M. Czech forest ecosystem classification. J. For. Sci. 2003, 49, 85–93. [Google Scholar]
- Forest Management Institute Forest Typology. Available online: http://www.uhul.cz/nase-cinnost/lesnicka-typologie (accessed on 22 August 2017).
- Machar, I.; Vlčková, V.; Buček, A.; Vozenilek, V.; Šálek, L.; Jeřábková, L. Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests. Forests 2017, 8. [Google Scholar] [CrossRef]
- Průša, E. Pěstování lesů na Typologických Základech (Cultivation of Forests Based on Forest Classification), 1st ed.; Lesnická Práce s.r.o.: Kostelec nad Černými Lesy, Czech Republic, 2001; p. 593, (In Czech). ISBN 80-86386-10-4. [Google Scholar]
- Randuška, D.; Vorel, J.; Plíva, K. Fytocenológia a Lesnícka Typológia (Phytocoenology and Forest Typology), 1st ed.; Príroda: Bratislava, Czechoslovakia, 1986; p. 329. (In Czech) [Google Scholar]
- Zlatník, A. Lesnická Fytocenologie (Forest Phytocoenology); Státni Zemědělské Nakladatelství Praha: Praha, Czechoslovakia, 1976; p. 495. (In Czech) [Google Scholar]
- Kubošová, K.; Komprda, J.; Bednářová, Z.; Hájek, O.; Sáňka, M.; Jarkovský, J.; Matoušková, P.; Kalábová, T. Vyhodnocení dat Databáze Lesnické Typologie a Úpravy Typologického Systému ÚHÚL—1. Část (Data Evaluation of Forest Typology Database and Modifications of the Czech Forest Ecosystem Classification—Part 1); Research Centre for Toxic Compounds in the Environment: Brno, Czech Republic, 2010; p. 100. (In Czech) [Google Scholar]
- Mikeska, M. Návrh tvorby a členění linií geograficky zonálních vegetačních stupňů (Proposal of formation and classification of outlines of geographically zonal vegetation tiers). In Problematika Lesnické Typologie II (The Question of Forest Typology II); Viewegh, J., Ed.; Česká Zemědělská Univerzita v Praze, Fakulta Lesnická, Katedra Dendrologie a Šlechtění Lesních Dřevin: Kostelec nad Černými Lesy, Czech Republic, 2000; Volume II, pp. 8–10. (In Czech) [Google Scholar]
- Višňák, R. Aktuální stav typologického systému a možnosti jeho dalšího vývoje (A state and possibilities of development of the Czech Forest Ecosystem Classification). Lesn. Práce 2001, 80, 72–75. (In Czech) [Google Scholar]
- Šamonil, P. Paradigma lesnické typologie z pohledu dynamiky přirozených lesů (Paradigm of forest typology from a view of forestry practice). Lesn. Práce 2012, 91, 19–21. (In Czech) [Google Scholar]
- Volařík, D. Application of digital elevation model for mapping vegetation tiers. J. For. Sci. 2010, 56, 112–120. [Google Scholar]
- Kusbach, A. Klasifikace lesů dvou kontinentů: Jak dál v lesnické typologii? (Forest classification in two continents: What next with that?). Lesn. Práce 2012, 91, 30–33. (In Czech) [Google Scholar]
- Zouhar, V. Stav lesnicko-typologického klasifikačního systému a možnosti jeho vývoje (The Czech Forest Ecosystem Classification—Present situation and development). In Geobiocenologie a její Aplikace v Lesnictví a Krajinářství. Sborník Příspěvků z Konference Konané 6.–7. Prosince 2012 v Brně. (Geobiocoenology and Its Application in Forestry and Landscape Ecology, Proceedings of the Conference Held on 6–7 December 2012; Friedl, M., Ed.; Geobiocenologické Spisy; Lesnická Práce s.r.o.: Kostelec nad Černými Lesy, Czech Republic, 2013; Volume 15, pp. 218–224. (In Czech) [Google Scholar]
- Zouhar, V. Database of Czech Forest Classification System. Biodivers. Ecol. 2012, 4, 346. [Google Scholar] [CrossRef]
- Brázdil, K.; Bělka, L.; Dušánek, P.; Fiala, R.; Gamrát, J.; Kafka, O.; Peichl, J.; Šíma, J. Technická Zpráva k Digitálnímu Modelu Reliéfu 4. Generace DMR 4G; State Administration of Land Surveying and Cadastre: Prague, Czech Republic, 2012; p. 11. (In Czech)
- Roberts, D.W.; Cooper, S.V. Concepts and techniques in vegetation mapping. In Proceedings, Land Classifications Based on Vegetation: Applications for Resource Management, Moscow, ID, November 17–19, 1987; Ferguson, D.E., Morgan, P., Johnson, F.D., Eds.; General Technical Report INT, 257; SAF Publication, 88-06; United States Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1989; pp. 90–96. [Google Scholar]
- Němeček, J.; Kozák, J. The Czech taxonomic soil classification system and the harmonization of soil maps. In Research Report No. 7; Czech Agricultural University, Department of Soil Science and Geology: Prague, Czech Republic, 2001; pp. 47–53. [Google Scholar]
- Hadaš, P. Speciální program pro odvození klimatických dat pro oblast Moravskoslezských Beskyd (The special program for derivation of climatic data for the territory of Moravian-Silesian Beskydy). In Zpravodaj Beskydy: Vliv Imisí na Lesy a Lesní Hospodářství Beskyd (The Beskids Bulletin: Influence of Air-Pollution on Forests and Forestry in the Beskids); Tesař, V., Kula, E., Eds.; Mendelova Zemědělská a Lesnická Univerzita v Brně: Brno, Czech Republic, 1997; pp. 229–234. (In Czech) [Google Scholar]
- Pyšek, P.; Danihelka, J.; Sádlo, J.; Chrtek, J.J.; Chytrý, M.; Jarošík, V.; Kaplan, Z.; Krahulec, F.; Moravcová, L.; Pergl, J.; et al. Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns. Preslia 2012, 84, 155–255. [Google Scholar]
- Academia. Vegetace České Republiky 4—Lesní a Křovinná Vegetace (Vegetation of the Czech Republic 4. Forest and Scrub Vegetation); Chytrý, M., Ed.; Academia: Praha, Czech Republic, 2013; Volume 4, p. 551, (In Czech). ISBN 978-80-200-2299-8. [Google Scholar]
- Ministry of Agriculture of the Czech Republic. Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v roce 2013 (Information on Forests and Forestry in the Czech Republic by 2013); Ministry of Agriculture of the Czech Republic: Praha, Czech Republic, 2014; p. 134, (In Czech). ISBN 978-80-7434-153-3. [Google Scholar]
- Macků, J. Methodology for establishing the degree of naturalness of forest stands. Acta Univ. Agric. Silvic. Mendelianae Brun. 2012, 60, 161–166. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2/3, 18–22. [Google Scholar]
- Peck, J.E. Multivariate Analysis for Community Ecologists: Step-By-Step Using PC-ORD; MjM Software: Gleneden Beach, OR, USA, 2010; p. 162. ISBN 0972129022. [Google Scholar]
- Lattin, J.M.; Carroll, J.D.; Green, P.E. Analyzing Multivariate Data; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2003; p. 556. ISBN 0534349749. [Google Scholar]
- McCune, B.; Mefford, M.J. PC-ORD. Multivariate Analysis of Ecological Data, Version 6.0 for Windows 2011; MjM Software: Gleneden Beach, OR, USA, 2011. [Google Scholar]
- Hair, J.F.J.; Hult, T.G.H.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2013; p. 307. ISBN 9781452217444. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002; p. 300. ISBN 0-9721290-0-6. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing 2014; R Core Team: Vienna, Austria, 2014. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. Ordination Methods, Diversity Analysis and Other Functions for Community and Vegetation Ecologists, Version 2.3-4. 2016. Available online: https://CRAN.R-project.org/package=vegan (accessed on 22 August 2017).
- Köppen, W.P. Köppen-Geiger Climate Classification. Available online: http://koeppen-geiger.vu-wien.ac.at/ (accessed on 18 November 2017).
- Quitt, E. Klimatické Oblasti Československa (Climatic Areas of Czechoslovakia); Studia Geographica 16; Geografický Ústav ČSAV: Brno, Czechoslovakia, 1971; p. 73. (In Czech) [Google Scholar]
- Krahulec, F.; Skalova, H.; Herben, T.; Hadincova, V.; Wildova, R.; Pechackova, S. Vegetation changes following sheep grazing in abandoned mountain meadows. Appl. Veg. Sci. 2001, 4, 97–102. [Google Scholar] [CrossRef]
- Treml, V.; Jankovská, V.; Petr, L. Holocene dynamics of the alpine timberline in the High Sudetes. Biologia 2008, 63, 73–80. [Google Scholar] [CrossRef]
- Novák, J.; Petr, L.; Treml, V. Late-Holocene human-induced changes to the extent of alpine areas in the East Sudetes, Central Europe. Holocene 2010, 20, 895–905. [Google Scholar] [CrossRef]
- Kozáková, R.; Šamonil, P.; Kuneš, P.; Novák, J.; Kočár, P.; Kočárová, R. Contrasting local and regional Holocene histories of Abies alba in the Czech Republic in relation to human impact: Evidence from forestry, pollen and anthracological data. Holocene 2011, 21, 431–444. [Google Scholar] [CrossRef]
- Elling, W.; Dittmar, C.; Pfaffelmoser, K.; Rötzer, T. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For. Ecol. Manag. 2009, 257, 1175–1187. [Google Scholar] [CrossRef]
- Müllerová, J.; Szabó, P.; Hédl, R. The rise and fall of traditional forest management in southern Moravia: A history of the past 700 years. For. Ecol. Manag. 2014, 331, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Müllerová, J.; Hédl, R.; Szabó, P. Coppice abandonment and its implications for species diversity in forest vegetation. For. Ecol. Manag. 2015, 343, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Kusbach, A.; Van Miegroet, H.; Boettinger, J.L.; Long, J.N. Vegetation geo-climatic zonation in the rocky mountains, Northern Utah, USA. J. Mt. Sci. 2014, 11, 656–673. [Google Scholar] [CrossRef]
- Smith, S.; Davidson, B. User’s Manual, Terrestrial Ecological Unit Inventory (TEUI) Land Type Associations, Modoc National Forest; R5-TP; U.S. Department of Agriculture, Forest Service: Washinghton, DC, USA, 2003; p. 268.
- Nelle, O.; Dreibrodt, S.; Dannath, Y. Combining pollen and charcoal: Evaluating Holocene vegetation composition and dynamics. J. Archaeol. Sci. 2010, 37, 2126–2135. [Google Scholar] [CrossRef]
- Robin, V.; Bork, H.-R.; Nadeau, M.-J.; Nelle, O. Fire and forest history of central European low mountain forest sites based on soil charcoal analysis: The case of the eastern Harz. Holocene 2014, 24, 35–47. [Google Scholar] [CrossRef]
- Nagel, T.A.; Svoboda, M.; Kobal, M. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe. Ecol. Appl. 2014, 24, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Novák, J.; Trotsiuk, V.; Sýkora, O.; Svoboda, M.; Chytrý, M. Ecology of Tilia sibirica in a continental hemiboreal forest, southern Siberia: An analogue of a glacial refugium of broad-leaved temperate trees? Holocene 2014, 24, 908–918. [Google Scholar] [CrossRef]
- Rybníček, K.; Rybníčková, E. Pollen analyses of sediments from the summit of the Praděd range in the Hrubý Jeseník Mts (Eastern Sudetes). Preslia 2004, 76, 331–347. [Google Scholar]
- Abella, S.R.; Denton, C.W. Spatial variation in reference conditions: Historical tree density and pattern on a Pinus ponderosa landscape. Can. J. For. Res. 2009, 39, 2391–2403. [Google Scholar] [CrossRef]
- Novák, J.; Sádlo, J.; Svobodová-Svitavská, H. Unusual vegetation stability in a lowland pine forest area (Doksy region, Czech Republic). Holocene 2012, 22, 947–955. [Google Scholar] [CrossRef]
- Novák, J.; Svoboda, J.; Šída, P.; Prostředník, J.; Pokorný, P. A charcoal record of Holocene woodland succession from sandstone rock shelters of North Bohemia (Czech Republic). Quat. Int. 2015, 366, 25–36. [Google Scholar] [CrossRef]
- Robin, V.; Talon, B.; Nelle, O. Pedoanthracological contribution to forest naturalness assessment. Quat. Int. 2013, 289, 5–15. [Google Scholar] [CrossRef]
- Pokharel, B.; Dech, J.P. An ecological land classification approach to modeling the production of forest biomass. For. Chron. 2011, 87, 23–32. [Google Scholar] [CrossRef]
- Pokharel, B.; Dech, J.P. Mixed-effects basal area increment models for tree species in the boreal forest of Ontario, Canada using an ecological land classification approach to incorporate site effects. Forestry 2012, 85, 255–270. [Google Scholar] [CrossRef]
- Bergeron, J.A.C.; Blanchet, F.G.; Spence, J.R.; Volney, W.J.A. Ecosystem classification and inventory maps as surrogates for ground beetle assemblages in boreal forest. J. Plant Ecol. 2012, 5, 97–108. [Google Scholar] [CrossRef]
- Meyn, A.; Taylor, S.W.; Flannigan, M.D.; Thonicke, K.; Cramer, W. Relationship between fire, climate oscillations, and drought in British Columbia, Canada, 1920-2000. Glob. Chang. Biol. 2010, 16, 977–989. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H. Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. Ecol. Model. 2011, 222, 2119–2129. [Google Scholar] [CrossRef]
- Haeussler, S.; University of Northern British Columbia, Prince George, BC, Canada. Personal communication, 2016.
- Barbati, A.; Corona, P.; Marchetti, M. A forest typology for monitoring sustainable forest management: The case of European Forest Types. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2007, 141, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Blasi, C.; Burrascano, S. The role of plant sociology in the study and management of European forest ecosystems. iFor. Biogeosci. For. 2013, 6, 55–58. [Google Scholar] [CrossRef]
- Zenner, E.K.; Peck, J.E.; Brubaker, K.; Gamble, B.; Gilbert, C.; Heggenstaller, D.; Hickey, J.; Sitch, K.; Withington, R. Combining Ecological Classification Systems and Conservation Filters Could Facilitate the Integration of Wildlife and Forest Management. J. For. 2010, 108, 296–300. [Google Scholar]
- Cameron, R.P.; Williams, D. Completing an Ecosystem Classification System for Nova Scotia. Nat. Areas J. 2011, 31, 92–96. [Google Scholar] [CrossRef]
- Peck, J.E.; Zenner, E.K. Site Classification Systems Could Link Social and Ecological Management Constraints. J. For. 2011, 109, 95–100. [Google Scholar]
- European Environment Agency. European Forest Types. Categories and Types for Sustainable Forest Management Reporting and Policy; EEA Technical Report; Office for Official Publications of the European Communities: Luxembourg, 2006; p. 111. ISBN 978-92-9167-926-3. [Google Scholar]
- European Environment Agency. European Forests—Ecosystem Conditions and Sustainable Use; EEA Report; Office for Official Publications of the European Communities: Luxembourg, 2008; p. 105. ISBN 978-92-9167-354-4. [Google Scholar]
- Caudullo, G.; Pasta, S.; Giannetti, F.; Barbati, A.; Chirici, G. European forest classifications. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; European Commission: Luxembourg, 2016; pp. 32–33. [Google Scholar]
- IOS Press. Framework Convention on the Protection and Sustainable Development of the Carpathians (Carpathian Convention); IOS Press: Kyiv, Ukraine, 2003. [Google Scholar]
- Ruffini, F.V.; Streifeneder, T.; Eiselt, B. Implementing an International Mountain Convention—An Approach for the Delimitation of the Carpathian Convention Area; EURAC Research: Bolzano, Italy, 2006; p. 119. ISBN 88-99906-20-7. [Google Scholar]
- San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T.; Mauri, A.; Tinner, W.; Ballian, D.; Beck, P.; Birks, H.J.B.; Eaton, E.; et al. European Atlas of Forest Tree Species; European Commission: Luxembourg, 2016; p. 197. ISBN 978-92-79-52833-0. [Google Scholar]
- Proctor, J.; Edwards, I.D.; Payton, R.W.; Nagy, L. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecol. 2007, 192, 251–269. [Google Scholar] [CrossRef]
- Batkhuu, N.-O.; Lee, D.K.; Tsogtbaatar, J. Forest and Forestry Research and Education in Mongolia. J. Sustain. For. 2011, 30, 600–617. [Google Scholar] [CrossRef]
- Rana, M.S.; Samant, S.S.; Rawat, Y.S. Plant communities and factors responsible for vegetation pattern in an alpine area of the northwestern Himalaya. J. Mt. Sci. 2011, 8, 817–826. [Google Scholar] [CrossRef]
- Jedrzejek, B.; Drees, B.; Daniëls, F.J.A.; Hölzel, N. Vegetation discontinuities and altitudinal indicator species in mountains of West Greenland: Finding the best positions and traits to observe the impact of climate warming in the Arctic. Appl. Veg. Sci. 2012, 15, 432–448. [Google Scholar] [CrossRef]
- Bannister, J.; Donoso, P. Forest Typification to Characterize the Structure and Composition of Old-growth Evergreen Forests on Chiloe Island, North Patagonia (Chile). Forests 2013, 4, 1087–1105. [Google Scholar] [CrossRef]
- Laflamme, J.; Munson, A.D.; Grondin, P.; Arseneault, D. Anthropogenic Disturbances Create a New Vegetation Toposequence in the Gatineau River Valley, Quebec. Forests 2016, 7. [Google Scholar] [CrossRef]
Climatic Factors | Character | Abbreviation | Units/Values |
---|---|---|---|
Annual total precipitation | R | Syr | mm |
Annual mean temperature | D | Tyr | °C |
Monthly mean precipitation (January–December) | D | S01–S12 | mm |
Monthly mean temperature (January–December) | D | T01–T12 | °C |
Vegetation period 10 °C | I | V10 | days |
Vegetation period 8 °C | I | V8 | days |
Physiographic/geomorphic factors | |||
Altitude | I | alt | meters |
Slope gradient | I | slope | degrees |
Slope aspect value | I | av | values 0–1 [50] |
Topographic exposure | I | Topex | values 0–255 |
Mass Balance Index | I | MBI | values −0.7–2 |
Positive Openness | I | PO | values 0–2 |
Topography Wetness Index | I | TWI | values 0–26 |
Saga Wetness Index | I | SAGA | values 0–12 |
Topographic Position Index | I | TPI | values −11.9–12 |
Terrain Roughness Index | I | TRI | values 0–60 |
Solar Radiation | I | Solrad | values 635,000–1,400,000 |
Vertical Distance to Channel Network | I | VertD | values 0–762 |
Convergence Index | I | CI | values −87–89 |
Relative slope position | I | RSP | values 0–1 |
Valley depth | I | VD | meters/ 0–600 |
Terrain Classification Index for lowlands | I | TCIlow | values 0–1 |
Gradient | I | Grad | values 0–1 |
Gradient Difference | I | GradD | values −0.5–0.3 |
Normalized Height | I | HNO | values 0–1 |
Slope Height | I | SH | meters/0–450 |
Diurnal Anisotropic Heating | I | Diur | values −0.6–0.5 |
Texture | I | Texture | values 0–0.9 |
Local convexity | I | Convex | values 0–0.8 |
Standardized Height | I | HST | meters/0–1500 |
Geologic/Soil Factors | |||
Geology | I | geol | NA, categorical |
Soil substrate | R | substr | NA, categorical |
Soil type | R | stype | NA, categorical |
Soil subtype | R | ssubtype | NA, categorical |
NFA | |||
---|---|---|---|
MDG | MDA | ||
Hercynicum | 04 mean precipitation | - | 67 |
05 mean precipitation | 430 | - | |
06 mean precipitation | 549 | 81 | |
07 mean precipitation | 476 | - | |
10 mean precipitation | 462 | 73 | |
12 mean precipitation | 380 | - | |
01 mean temperature | - | 65 | |
Valley depth | - | 72 | |
Carpaticum | 05 mean precipitation | 209 | 39 |
05 mean precipitation | 130 | - | |
06 mean precipitation | 212 | 40 | |
08 mean precipitation | 233 | 48 | |
09 mean precipitation | 111 | - | |
Texture | - | 35 | |
Soil substrate | - | 34 |
FVZ | |||
---|---|---|---|
MDG | MDA | ||
Hercynicum | 01 mean precipitation | - | 61 |
03 mean precipitation | - | 63 | |
06 mean precipitation | - | 78 | |
03 mean temperature | 285 | - | |
05 mean temperature | 288 | - | |
11 mean temperature | 396 | - | |
Annual mean temperature | 336 | - | |
Soil subtype | 291 | 75 | |
Soil type | - | 66 | |
Carpaticum | 05 mean precipitation | 159 | 43 |
06 mean precipitation | 125 | 42 | |
08 mean precipitation | - | 33 | |
12 mean precipitation | 113 | 38 | |
03 mean temperature | 99 | - | |
05 mean temperature | 91 | - | |
Terrain roughness index | - | 33 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusbach, A.; Friedl, M.; Zouhar, V.; Mikita, T.; Šebesta, J. Assessing Forest Classification in a Landscape-Level Framework: An Example from Central European Forests. Forests 2017, 8, 461. https://doi.org/10.3390/f8120461
Kusbach A, Friedl M, Zouhar V, Mikita T, Šebesta J. Assessing Forest Classification in a Landscape-Level Framework: An Example from Central European Forests. Forests. 2017; 8(12):461. https://doi.org/10.3390/f8120461
Chicago/Turabian StyleKusbach, Antonín, Michal Friedl, Václav Zouhar, Tomáš Mikita, and Jan Šebesta. 2017. "Assessing Forest Classification in a Landscape-Level Framework: An Example from Central European Forests" Forests 8, no. 12: 461. https://doi.org/10.3390/f8120461
APA StyleKusbach, A., Friedl, M., Zouhar, V., Mikita, T., & Šebesta, J. (2017). Assessing Forest Classification in a Landscape-Level Framework: An Example from Central European Forests. Forests, 8(12), 461. https://doi.org/10.3390/f8120461