Influence of Chain Filing, Tree Species and Chain Type on Cross Cutting Efficiency and Health Risk
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Factors Influencing Cross Cutting Time
3.2. Factors Influencing Sawdust Structure
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Spinelli, R.; Magagnotti, N.; Nati, C. Options for the mechanized processing of hardwood trees in Mediterranean forests. Int. J. For. Eng. 2009, 20, 39–44. [Google Scholar]
- Montorselli, N.B.; Lombardin, C.; Magagnotti, N.; Marchi, E.; Neri, F.; Picchi, G.; Spinelli, R. Relating safety, productivity and company type for motor-manual logging operations in the Italian Alps. Accid. Anal. Prev. 2010, 42, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Vusić, D.; Šušnjar, M.; Marchi, E.; Spina, R.; Zečić, Ž.; Picchio, R. Skidding operations in thinning and shelterwood cut of mixed stands—Work productivity, energy inputs and emissions. Ecol. Eng. 2013, 61, 216–223. [Google Scholar] [CrossRef]
- Karjalainen, T.; Zimmer, B.; Berg, S.; Welling, J.; Schwaiger, H.; Finér, L.; Cortijo, P. Energy, Carbon and other Material Flows in the Life Cycle Assessment in Forestry and Forest Products; European Forest Institute: Joensuu, Finland, 2001; p. 68. [Google Scholar]
- Jourgholami, M.; Majnounian, B.; Zargham, N. Performance, capability and costs of motor-manual tree felling in Hyrcanian hardwood forest. Croat. J. For. Eng. 2013, 34, 283–293. [Google Scholar]
- Liepiņš, K.; Lazdiņš, A.; Liepiņš, J.; Prindulis, U. Productivity and cost-effectiveness of mechanized and motor-manual harvesting of grey alder (Alnus incana (L.) Moench): A case study in Latvia. Small-Scale For. 2015, 14, 493–506. [Google Scholar] [CrossRef]
- Koutsianitis, D.; Tsioras, P.A. Time consumption and production costs of two small-scale wood harvesting systems in northern Greece. Small-Scale For. 2017, 16, 19–35. [Google Scholar] [CrossRef]
- Wallington, T.J.; Srinivasan, J.; Nielsen, O.J.; Highwood, E.J. Greenhouse gases and global warming. In Environmental and Ecological Chemistry—Volume 1; Sabljic, A., Ed.; Eolss Publishers: Oxford, UK, 2009; pp. 36–63. [Google Scholar]
- Lindroos, O.; Burström, L. Accident rates and types among self-employed private forest owners. Accid. Anal. Prev. 2010, 42, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Poje, A.; Potočnik, I.; Košir, B.; Krč, J. Cutting patterns as a predictor of the odds of accident among professional fellers. Saf. Sci. 2016, 89, 158–166. [Google Scholar] [CrossRef]
- Melemez, K.; Tunay, M. Determining physical workload of chainsaw operators working in forest harvesting. Technology 2010, 13, 237–243. [Google Scholar]
- Parker, R.J.; Bentley, T.A.; Ashby, L.J. Human factors testing in forest industry. In Handbook of Human Factors Testing and Evaluation—Second Edition; Charlton, S.G., O’Brien, T.G., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2008; pp. 319–340. [Google Scholar]
- Minetti, L.J.; de Souza, A.P.; Machado, C.C.; Fiedler, N.C.; Baêta, F.d.C. Evaluation of noise and vibration effects of forest cutting on chainsaw operators. Rev. Árvore 1998, 22, 325–330. [Google Scholar]
- Fonseca, A.; Aghazadeh, F.; de Hoop, C.; Ikuma, L.; Al-Qaisi, S. Effect of noise emitted by forestry equipment on workers’ hearing capacity. Int. J. Ind. Ergon. 2015, 46, 105–112. [Google Scholar] [CrossRef]
- Rottensteiner, C.; Tsioras, P.; Stampfer, K. Wood density impact on hand-arm vibration. Croat. J. For. Eng. 2012, 33, 303–312. [Google Scholar]
- Hooper, B.; Parker, R.; Todoroki, C. Exploring chainsaw operator occupational exposure to carbon monoxide in forestry. J. Occup. Environ. Hyg. 2017, 14, D1–D12. [Google Scholar] [CrossRef] [PubMed]
- Horvat, D.; Kos, A.; Zečič, Z.; Jazbec, A.; Šušnjar, M.; Očkajová, A. Tree cutters’ exposure to oakwood dust—A case study from Croatia. Die Bodenkult. 2007, 58, 59–65. [Google Scholar]
- Marchi, E.; Neri, F.; Cambi, M.; Laschi, A.; Foderi, C.; Sciarra, G.; Fabiano, F. Analysis of dust exposure during chainsaw forest operations. iForest-Biogeosci. For. 2017, 10, 341–347. [Google Scholar] [CrossRef]
- Neri, F.; Foderi, C.; Laschi, A.; Fabiano, F.; Cambi, M.; Sciarra, G.; Aprea, M.C.; Cenni, A.; Marchi, E. Determining exhaust fumes exposure in chainsaw operations. Environ. Pollut. 2016, 218, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D. Air quality on biomass harvesting operations. In Proceedings of the 34th Council on Forest Engineering Annual Meeting, Quebec City, QC, Canada, 12–15 June 2011; p. 9. [Google Scholar]
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans: Wood Dust and Formaldehyde; WHO: Lyon, France, 1995; Volume 62. [Google Scholar]
- Kauppinen, T.; Vincent, R.; Liukkonen, T.; Grzebyk, M.; Kauppinen, A.; Welling, I.; Arezes, P.; Black, N.; Bochmann, F.; Campelo, F.; et al. Occupational exposure to inhalable wood dust in the member states of the European Union. Ann. Occup. Hyg. 2006, 50, 549–561. [Google Scholar] [PubMed]
- Sánchez, J.A.; van Martie, T.; Cherrie, J.W. A Review of Monitoring Methods for Inhalable Hardwood Dust; IOM (Institute of Occupational Medicine): Edinburgh, UK, 2011; p. 21. [Google Scholar]
- Harper, M.; Muller, B.S. An evaluation of total and inhalable samplers for the collection of wood dust in three wood products industries. J. Environ. Monit. 2002, 4, 648–656. [Google Scholar] [CrossRef] [PubMed]
- WHO. Hazard Prevention and Control in the Work Environment: Airborne Dust; WHO: Geneva, Switzerland, 1999; p. 96. [Google Scholar]
- Charbotel, B.; Fervers, B.; Droz, J.P. Occupational exposures in rare cancers: A critical review of the literature. Crit. Rev. Oncol. Hematol. 2014, 90, 99–134. [Google Scholar] [CrossRef] [PubMed]
- Maciak, A. Wpływ geometrii ostrza żłobikowego na jego obciążenie podczas skrawania drewna sosnowego [Effects of the cutting link geometry on its load during the cutting of pine wood]. Przeg. Tech. Roln. Leśn. 1998, 5, 18–21. [Google Scholar]
- Mihelič, M.; Spinelli, R.; Magagnotti, N.; Poje, A. Performance of a new industrial chipper for rural contractors. Biomass Bioenergy 2015, 83, 152–158. [Google Scholar] [CrossRef]
- ISO. Acoustics—Measurement at the Operator’s Position of Airborne Noise Emitted by Chain Saws; ISO: Geneva, Switzerland, 1984; Volume 7182. [Google Scholar]
- EN. Solid Biofuels—Methods for the Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method; European Committee for Standardization: Brussels, Belgium, 2010; Volume 14774-2. [Google Scholar]
- EN. Solid Biofuels—Determination of Particle Size Distribution—Part 1: Oscillating Screen Method Using Sieve Apertures of 1 mm and above; European Committee for Standardization: Brussels, Belgium, 2011; Volume 15149-1. [Google Scholar]
- Comas-Cufí, M.; Thio-Henestrosa, S. Codapack 2.0: A stand-alone, multi-platform compositional software. In Proceedings of the CoDaWork’11: 4th International Workshop on Compositional Data Analysis, Sant Feliu de Guíxols, Spain, 10–13 May 2011; Egozcue, J.J., Tolosana-Delgado, R., Ortego, M.I., Eds.; Universitat de Girona: Sant Feliu de Guíxols, Spain, 2011; pp. 1–10. [Google Scholar]
- Stempski, W.; Jabłon’ski, K.; Wegner, J. Relations between top-plate filing angle values of cutting chains and chain saw vibration levels. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 2010, 9, 31–39. [Google Scholar]
- Trzciński, G. Assessment of the technical condition of chain saws owned by forestry workers. Przeg. Tech. Roln. Leśn. 1995, 1, 21–23. [Google Scholar]
- Da̧browski, A. Reducing kickback of portable combustion chain saws and related injury risks: Laboratory tests and deductions. Int. J. Occup. Saf. Ergon. 2012, 18, 399–417. [Google Scholar] [CrossRef] [PubMed]
- Dessureault, P.C.; Laperrière, A.; Vincent, J.Y. The control of chain saw vibration. Sound Vib. 1988, 22, 32–34. [Google Scholar]
- Magagnotti, N.; Nannicini, C.; Sciarra, G.; Spinelli, R.; Volpi, D. Determining the exposure of chipper operators to inhalable wood dust. Ann. Occup. Hyg. 2013, 57, 784–792. [Google Scholar] [PubMed]
- Bell, J.L. Changes in logging injury rates associated with use of feller-bunchers in West Virginia. J. Saf. Res. 2002, 33, 463–471. [Google Scholar] [CrossRef]
- Axelsson, S.-Å. The mechanization of logging operations in Sweden and its effect on occupational safety and health. Int. J. For. Eng. 1998, 9, 25–31. [Google Scholar]
Factors | Variable Description | Levels | Coding | Unit | N 1 | Mean | Standard Deviation |
---|---|---|---|---|---|---|---|
Cross cutting time | Continuous variable indicating duration of cross cutting. | - | t | s | 180/0 | 26.39 | 10.44 |
Sawdust structure | Continuous variable indicating weight structure of chips distributed in three classes. | >3 mm | wtB | % | 0/36 | 52.87 | 10.34 |
0.125 mm <>3 mm | wtM | % | 0/36 | 45.66 | 10.14 | ||
<0.125 mm | wtS | % | 0/36 | 1.49 | 0.87 | ||
Top plate filing angle | Dummy variable indicating angle of the cutting tooth. The filing angle was between 15–40°, depending on the type of chain and producer. The producer proposed filing angle is marked as 0°. | −10° | A − 10° | - | 60/12 | - | - |
0° | A0° | - | 60/12 | - | - | ||
+10° | A + 10° | - | 60/12 | - | - | ||
Depth gauge height | Dummy variable indicating height difference between the depth gauge and the tip of the tooth cutting tooth. The height difference was 0.45, 0.65 and 0.85 mm. The proposed producer’s difference is 0.65 mm. | 0.45 mm | G0.45 | - | 60/12 | - | - |
0.65 mm | G0.65 | - | 60/12 | - | - | ||
0.85 mm | G0.85 | - | 60/12 | - | - | ||
Tree species | Dummy variable indicating two tree species (beech and fir) indicative of Central European conditions. | Beech | SB | - | 90/18 | - | - |
Fir | SF | - | 90/18 | - | - | ||
Chain producer | Dummy variable indicating two producers of saw chains. | Producer 1 | P1 | - | 90/18 | - | - |
Producer 2 | P2 | - | 90/18 | - | - |
Source | SS 1 | df 2 | MS 3 | F value | p-level |
---|---|---|---|---|---|
Corrected Model | 0.100 | 6 | 0.017 | 29.646 | 0.000 |
Intercept | 7.483 | 1 | 7.483 | 13,339.983 | 0.000 |
Depth gauge height | 0.016 | 2 | 0.008 | 14.108 | 0.000 |
Chain producer | 0.004 | 1 | 0.004 | 7.380 | 0.007 |
Tree species | 0.046 | 1 | 0.046 | 81.318 | 0.000 |
Top plate filing angle | 0.034 | 2 | 0.017 | 30.480 | 0.000 |
Error | 0.097 | 173 | 0.001 | ||
Total | 7.679 | 180 | |||
Corrected Total | 0.197 | 179 |
Effect | Value | F Value | Hypothesis df 1 | Error df 1 | p-Level | |
---|---|---|---|---|---|---|
Intercept | Pillai’s Trace | 0.997 | 5476.936 | 2 | 28 | 0.000 |
Top plate filing angle | 0.613 | 6.404 | 4 | 58 | 0.000 | |
Depth gauge height | 0.170 | 1.345 | 4 | 58 | 0.264 | |
Chain producer | 0.323 | 6.668 | 2 | 28 | 0.004 | |
Tree species | 0.912 | 145.325 | 2 | 28 | 0.000 |
Source | SS 1 | df 2 | MS 3 | F Value | p-Level | |
---|---|---|---|---|---|---|
Corrected Model | ILR1 | 1.739 | 6 | 0.290 | 5.551 | 0.001 |
ILR2 | 9.200 | 6 | 1.533 | 52.511 | 0.000 | |
Intercept | ILR1 | 0.386 | 1 | 0.386 | 7.398 | 0.011 |
ILR2 | 322.640 | 1 | 322.640 | 11,049.729 | 0.000 | |
Top plate filing angle | ILR1 | 1.092 | 2 | 0.546 | 10.456 | 0.000 |
ILR2 | 0.450 | 2 | 0.225 | 7.699 | 0.002 | |
Depth gauge height | ILR1 | 0.108 | 2 | 0.054 | 1.035 | 0.368 |
ILR2 | 0.140 | 2 | 0.070 | 2.399 | 0.109 | |
Chain producer | ILR1 | 0.529 | 1 | 0.529 | 10.129 | 0.003 |
ILR2 | 0.049 | 1 | 0.049 | 1.669 | 0.207 | |
Tree species | ILR1 | 0.010 | 1 | 0.010 | 0.198 | 0.660 |
ILR2 | 8.561 | 1 | 8.561 | 293.204 | 0.000 | |
Error | ILR1 | 1.514 | 29 | 0.052 | ||
ILR2 | 0.847 | 29 | 0.029 | |||
Total | ILR1 | 3.640 | 36 | |||
ILR2 | 332.687 | 36 | ||||
Corrected Total | ILR1 | 3.254 | 35 | |||
ILR2 | 10.046 | 35 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marenče, J.; Mihelič, M.; Poje, A. Influence of Chain Filing, Tree Species and Chain Type on Cross Cutting Efficiency and Health Risk. Forests 2017, 8, 464. https://doi.org/10.3390/f8120464
Marenče J, Mihelič M, Poje A. Influence of Chain Filing, Tree Species and Chain Type on Cross Cutting Efficiency and Health Risk. Forests. 2017; 8(12):464. https://doi.org/10.3390/f8120464
Chicago/Turabian StyleMarenče, Jurij, Matevž Mihelič, and Anton Poje. 2017. "Influence of Chain Filing, Tree Species and Chain Type on Cross Cutting Efficiency and Health Risk" Forests 8, no. 12: 464. https://doi.org/10.3390/f8120464
APA StyleMarenče, J., Mihelič, M., & Poje, A. (2017). Influence of Chain Filing, Tree Species and Chain Type on Cross Cutting Efficiency and Health Risk. Forests, 8(12), 464. https://doi.org/10.3390/f8120464