Characterization of Shoot Growth and Carbon Accumulation in Moso Bamboo Based on Different Stand Densities
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plot Establishment
2.3. Spring Bamboo Shoot Growth Monitoring
2.4. Taper Equation Development for Bamboo Shoots
2.5. Determination of Carbon Content (Mass Fraction) in Plant Samples
- C = Concentration of the FeSO4 standard solution (mol/L);
- V = Volume of FeSO4 standard solution consumed in the sample titration (mL);
- V0 = Volume of FeSO4 standard solution consumed in the blank titration (mL);
- 3.0 = Molar mass of 1/4 carbon atom (g/mol);
- m = Sample mass (g);
- 1.1 = Oxidation correction factor.
2.6. Data Analysis
3. Results
3.1. Shoot Quantity Characteristics
3.2. Shoot Quality Characteristics
3.3. Model Selection and Parameter Estimation Based on Variable Taper Index
3.4. Characteristics of Carbon Accumulation During the Bamboo Shoot Period
3.5. Proportion of Carbon Accumulation in the Shoot Growth Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameters | b10 * | b10 * | b10 * sd | b10 | b10 * | b10 * log (sd) | b10/sd | b10/ | >b10/ | b10/log (sd) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
b1 | 1.479 (0.098) *** | 1.459 (0.096) *** | 1.497 (0.100) *** | 1.506 (0.101) *** | 1.510 (1.011) *** | 1.493 (0.099) *** | 1.527 (0.102) *** | 1.529 (0.102) *** | 1.520 (0.102) *** | 1.515 (0.101) *** | 1.513 (0.101) *** | 1.520 (0.102) *** |
b2 | 0.883 (0.025) *** | 0.887 (0.025) *** | 0.880 (0.026) *** | 0.879 (0.026) *** | 0.879 (2.576) *** | 0.88 (0.026) *** | 0.878 (0.026) *** | 0.88 (0.026) *** | 0.877 (0.026) *** | 0.878 (0.026) *** | 0.878 (0.026) *** | 0.877 (0.026) *** |
b3 | −0.085 (0.025) *** | −0.082 (0.025) *** | −0.088 (0.025) *** | −0.090 (0.025) *** | −0.090 (2.542) *** | −0.087 (0.025) *** | −0.095 (0.026) *** | −0.097 (0.025) *** | −0.092 (0.025) *** | −0.091 (0.025) *** | −0.090 (0.025) *** | −0.092 (0.025) *** |
b4 | 0.153 (0.008) *** | 0.138 (0.008) *** | 0.164 (0.007) *** | 0.169 (0.007) *** | 0.170 (7.238) *** | 0.163 (0.007) *** | 0.173 (0.007) *** | 0.167 (0.008) *** | 0.174 (0.007) *** | 0.174 (0.007) *** | 0.173 (0.007) *** | 0.174 (0.007) *** |
b5 | −0.202 (0.035) *** | −0.187 (0.035) *** | −0.220 (0.036) *** | −0.232 (0.036) *** | −0.238 (3.61) *** | −0.215 (0.036) *** | −0.280 (0.037) *** | −0.304 (0.037) *** | −0.257 (0.036) *** | −0.246 (0.036) *** | −0.243 (0.036) *** | −0.256 (0.036) *** |
b6 | −0.395 (0.016) *** | −0.432 (0.017) *** | −0.366 (0.015) *** | −0.356 (0.015) *** | −0.353 (1.507) *** | −0.37 (0.015) *** | −0.345 (0.015) *** | −0.359 (0.016) *** | −0.341 (0.015) *** | −0.343 (0.015) *** | −0.345 (0.015) *** | −0.341 (0.015) *** |
b7 | 1.515 (0.163) *** | 1.476 (0.162) *** | 1.554 (0.164) *** | 1.577 (0.165) *** | 1.589 (1.650) *** | 1.546 (0.164) *** | 1.649 (0.166) *** | 1.676 (0.165) *** | 1.619 (0.165) *** | 1.605 (0.165) *** | 1.603 (0.165) *** | 1.619 (0.165) *** |
b8 | 0.062 (0.006) *** | 0.060 (0.006) *** | 0.063 (0.006) *** | 0.064 (0.006) *** | 0.064 (6.240) *** | 0.063 (0.006) *** | 0.065 (0.006) *** | 0.065 (0.006) *** | 0.065 (0.006) *** | 0.064 (0.006) *** | 0.064 (0.006) *** | 0.065 (0.006) *** |
b9 | 0.025(0.02) | 0.027 (0.020) | 0.023 (0.020) | 0.021 (0.020) | 0.020 (2.027) | 0.023 (0.020) | 0.017 (0.020) | 0.015 (0.02) | 0.019 (0.020) | 0.020 (0.020) | 0.020 (0.020) | 0.019 (0.020) |
b10 | 0.025 (0.003) *** | 0.057 (0.006) *** | 0.005 (0.001) *** | 0.001 (0.00) *** | 0.000 (2.173) *** | 0.018 (0.003) *** | 0.005 (0.010) | 0.034 (0.013) ** | −0.016 (0.009) | −0.037 (0.012) ** | −0.075 (0.021) *** | −0.006 (0.003) |
R2 | 0.829 | 0.832 | 0.827 | 0.826 | 0.825 | 0.827 | 0.824 | 0.825 | 0.825 | 0.825 | 0.825 | 0.825 |
RMSE | 1.149 | 1.139 | 1.157 | 1.161 | 1.162 | 1.155 | 1.165 | 1.164 | 1.165 | 1.163 | 1.162 | 1.165 |
rRMSE | 0.097 | 0.096 | 0.097 | 0.098 | 0.098 | 0.097 | 0.098 | 0.098 | 0.098 | 0.098 | 0.098 | 0.098 |
MB | −0.006 | −0.006 | −0.006 | −0.007 | −0.007 | −0.006 | −0.007 | −0.007 | −0.007 | −0.007 | −0.006 | −0.007 |
TRE | 0.893 | 0.877 | 0.905 | 0.911 | 0.913 | 0.902 | 0.918 | 0.915 | 0.917 | 0.914 | 0.913 | 0.917 |
Parameters | AIC | BIC | logLik | R2 | RMSE | rRMSE | TRE |
---|---|---|---|---|---|---|---|
b1 | 6799.080 | 6867.358 | −3387.540 | 0.837 | 1.122 | 0.094 | 0.850 |
b2 | 6792.572 | 6860.850 | −3384.286 | 0.839 | 1.117 | 0.094 | 0.843 |
b3 | 6792.294 | 6860.572 | −3384.147 | 0.839 | 1.116 | 0.094 | 0.841 |
b4 | 6656.134 | 6724.411 | −3316.067 | 0.875 | 0.982 | 0.082 | 0.650 |
b10 | 6142.601 | 6210.879 | −3059.300 | 0.943 | 0.661 | 0.056 | 0.294 |
b1, b2 | 6794.572 | 6868.540 | −3384.286 | 0.839 | 1.117 | 0.094 | 0.843 |
b1, b3 | 6794.294 | 6868.262 | −3384.147 | 0.839 | 1.116 | 0.094 | 0.842 |
b1, b4 | 6658.134 | 6732.101 | −3316.067 | 0.875 | 0.982 | 0.082 | 0.650 |
b1, b10 | 6144.601 | 6218.569 | −3059.300 | 0.943 | 0.661 | 0.056 | 0.294 |
b2, b3 | 6794.294 | 6868.262 | −3384.147 | 0.839 | 1.116 | 0.094 | 0.842 |
b2, b4 | 6658.134 | 6732.101 | −3316.067 | 0.875 | 0.982 | 0.082 | 0.650 |
b2, b10 | 6144.601 | 6218.569 | −3059.300 | 0.943 | 0.661 | 0.056 | 0.294 |
b3, b4 | 6658.134 | 6732.101 | −3316.067 | 0.875 | 0.982 | 0.082 | 0.650 |
b3, b10 | 6144.601 | 6218.569 | −3059.300 | 0.943 | 0.661 | 0.056 | 0.294 |
b4, b10 | 6118.869 | 6192.837 | −3046.435 | 0.949 | 0.626 | 0.053 | 0.263 |
References
- State Forestry and Grassland Administration, China Forest Resources Report; China Forestry Publishing House: Beijing, China, 2019; ISBN 978-7-5038-9982-9.
- Peng, Z.; Lu, T.; Li, L.; Liu, X.; Gao, Z.; Hu, T.; Yang, X.; Feng, Q.; Guan, J.; Weng, Q.; et al. Genome-Wide Characterization of the Biggest Grass, Bamboo, Based on 10,608 Putative Full-Length cDNA Sequences. BMC Plant Biol. 2010, 10, 116. [Google Scholar] [CrossRef]
- Chen, M.; Guo, L.; Ramakrishnan, M.; Fei, Z.; Vinod, K.K.; Ding, Y.; Jiao, C.; Gao, Z.; Zha, R.; Wang, C.; et al. Rapid Growth of Moso Bamboo (Phyllostachys edulis): Cellular Roadmaps, Transcriptome Dynamics, and Environmental Factors. Plant Cell 2022, 34, 3577–3610. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.H. Present Situation and Strategies of Bamboo Industry Development in China. J. Bamboo Res. 2000, 19, 1–5. [Google Scholar]
- Lv, B.; Niu, X.B.; Ding, W.R. Effect of Bamboo Density on Shoot Yield of Chimonobambusa Pachystachs Forest. J. Green Sci. Technol. 2024, 26, 157–160. [Google Scholar] [CrossRef]
- Huang, J.S.; Shi, X.D.; Zhang, Z.J.; Yu, G.X. Effects of Fertilization and Stand Density on Shoot Yield of Chimonobambusa quadrangularis. World Bamboo Ratt. 2018, 16, 30–36. [Google Scholar] [CrossRef]
- Zhu, T.S.; He, C.F. The Influence of Different Stand Densities on the Number of Divisions and Growth Traits of Moso Bamboo. Agric. Technol. 2015, 35, 89–90. [Google Scholar] [CrossRef]
- Chen, C.H.; Lai, Y.L.; Yang, C.; Chen, Y.G.; Liu, Z.X.; Zhang, Z.W. Effect of Density on Growth of Phyllostachys pubescens in Chongyang. Hubei For. Sci. Technol. 2016, 45, 10–14. [Google Scholar]
- Lin, L.B. Responses of Pleioblastus amarus phenotypic plasticity to the changes of plantation density. J. Jiangsu For. Sci. Technol. 2018, 45, 11–14+17. [Google Scholar] [CrossRef]
- Lin, X.C.; Huang, B.H.; Sun, P.J.; Yuan, X.L.; Hu, C.Z.; Fang, W. Study on the Standing Bamboo Density and Fertilization Effect in Bitter Bamboo Forests. For. Sci. Technol. 2007, 32, 19–22. [Google Scholar] [CrossRef]
- Liu, H.Y.; Wang, Z.; Xu, Y.W.; Ge, X.G.; Zhou, B.Z.; Jiang, Z.L. Characteristics of Carbon Storage in Phyllostulis pubescens Ecosystem with Different Stand Densities. Chin. Agric. Sci. Bull. 2022, 38, 17–21. [Google Scholar] [CrossRef]
- Wu, L.R.; Zhong, H.; Gao, G.B.; Pan, Y.H. The Relationship between the Density and Bamboo-shoots Yield of the Shoots andBamboo Dual-purpose Moso Bamboo Forests. J. Bamboo Res. 2014, 33, 25–28. [Google Scholar] [CrossRef]
- You, D.L. The influence of vertical bamboo structure and fertilization on the growth of bamboo shoots in bitter bamboo forests. Mod. Agric. Sci. Technol. 2012, 14, 127–129. [Google Scholar] [CrossRef]
- Li, C.; Zhou, G.M.; Shi, Y.J.; Zhou, Y.F.; Xu, X.J.; Zhang, Y.P.; Fan, Y.Q.; Shen, Z.M. Effects of old bamboo forests and relevant management measures on growth of new bamboo forests. Acta Ecol. Sin. 2016, 36, 2243–2254. [Google Scholar]
- Forrester, D.I.; Ammer, C.; Annighöfer, P.J.; Barbeito, I.; Bielak, K.; Bravo-Oviedo, A.; Coll, L.; Del Río, M.; Drössler, L.; Heym, M.; et al. Effects of Crown Architecture and Stand Structure on Light Absorption in Mixed and Monospecific Fagus Sylvatica and Pinus Sylvestris Forests along a Productivity and Climate Gradient through Europe. J. Ecol. 2018, 106, 746–760. [Google Scholar] [CrossRef]
- Lochhead, K.D.; Comeau, P.G. Relationships between Forest Structure, Understorey Light and Regeneration in Complex Douglas-Fir Dominated Stands in South-Eastern British Columbia. For. Ecol. Manag. 2012, 284, 12–22. [Google Scholar] [CrossRef]
- Farooq, T.H.; Shakoor, A.; Rashid, M.H.U.; Zhang, S.; Wu, P.; Yan, W. Annual Growth Progression, Nutrient Transformation, and Carbon Storage in Tissues of Cunninghamia Lanceolata Monoculture in Relation to Soil Quality Indicators Influenced by Intraspecific Competition Intensity. J. Soil. Sci. Plant Nutr. 2021, 21, 3146–3158. [Google Scholar] [CrossRef]
- Zhou, G.M.; Jiang, P.K.; Mo, L.F. Bamboo: A possible approach to the control of global warming. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 547–550. [Google Scholar]
- Lobovikov, M.; Schoene, D.; Yping, L. Bamboo in Climate Change and Rural Livelihoods. Mitig. Adapt. Strat. Glob. Change 2012, 17, 261–276. [Google Scholar] [CrossRef]
- Liu, E.B.; Shi, Y.J.; Li, Y.F.; Zhou, G.M. Carbon Sequetration Potential of Moso Bamboo Forest in Zhejiang Province Based on the Non-Spatial Structure. Sci. Silvae Sin. 2012, 48, 9–14. [Google Scholar] [CrossRef]
- Kang, F.; Li, X.; Du, H.; Mao, F.; Zhou, G.; Xu, Y.; Huang, Z.; Ji, J.; Wang, J. Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and Their Response to Climate Change Based on a BEPS Model in China. Remote Sens. 2022, 14, 366. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, G.C.; Zhang, X.D.; Zhang, L.; Gao, S.H. Carbon stock and sequestration of a Phyllostachys edulis forest in Changning, Sichuan Province. Acta Ecol. Sin. 2014, 34, 3592–3601. [Google Scholar] [CrossRef]
- Wang, B.; Yang, P.Q.; Guo, Q.R.; Zhao, G.D.; Fang, K. Carbon Storage and Allocation of Phyllostachys edulis Forest and Evergreen Broad-leaved Forest in Dagangshan Mountain, Jiangxi. Guihaia 2011, 31, 342–348. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Yen, T.-M. Assessing Aboveground Carbon Storage Capacity in Bamboo Plantations with Various Species Related to Its Affecting Factors across Taiwan. For. Ecol. Manag. 2021, 481, 118745. [Google Scholar] [CrossRef]
- Yiping, L.; Yanxia, L.; Buckingham, K.; Henley, G.; Guomo, Z. Bamboo and Climate Change Mitigation: A comparative analysis of carbon sequestration. Int. Netw. Bamboo Ratt. 2010, 32, 1–28. [Google Scholar]
- Devi, A.S.; Singh, K.S. Carbon Storage and Sequestration Potential in Aboveground Biomass of Bamboos in North East India. Sci. Rep. 2021, 11, 837. [Google Scholar] [CrossRef]
- Kozak, A. My last words on taper equations. For. Chron. 2004, 80, 507–515. [Google Scholar] [CrossRef]
- Schröder, T.; Costa, E.A.; Valério, A.F.; Lisboa, S.G. Taper equations for Pinus elliottii engelm in southern paraná, brazil. For. Sci. 2015, 61, 311–319. [Google Scholar] [CrossRef]
- NY/T 1121.6-2006; Soil Testing Part 6: Method for Determination of Soil Organic Matter. Standrds Press of China: Beijing, China, 2006.
- Kholdaenko, Y.A.; Belokopytova, L.V.; Zhirnova, D.F.; Upadhyay, K.K.; Tripathi, S.K.; Koshurnikova, N.N.; Sobachkin, R.S.; Babushkina, E.A.; Vaganov, E.A. Stand Density Effects on Tree Growth and Climatic Response in Picea Obovata Ledeb. Plantations. For. Ecol. Manag. 2022, 519, 120349. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, S.; Jiang, H.; Cao, Q. The Water Transport Profile of Phyllostachys Edulis during the Explosive Growth Phase of Bamboo Shoots. Glob. Ecol. Conserv. 2020, 24, e01251. [Google Scholar] [CrossRef]
- Huang, D.C.; Guo, X.; Wang, D.X.; Wang, Y.S.; Zhang, X.; Huo, X.Y. Effects of Different Management Methods on Stand Growth and Understory Vegetation of Larix principis-rupprechtii in Qinling Mountains. Sci. Silvae Sin. 2024, 60, 58–66. [Google Scholar] [CrossRef]
- Hu, Y.Z. Effects of Aspect and Gap Size on Numbers and Growth of Natural Regeneration Seedlings in Pinus tabulaeformis Plantation. Prot. For. Sci. Technol. 2019, 195, 11–13. [Google Scholar] [CrossRef]
- Hanxuan, F.; Guanzhou, X.; Fangyuan, S.; Lixue, Y. Effects of small forest gaps on the growth and leaf traits of artificially regenerated Tilia amurensis. J. Cent. South Univ. For. Technol. 2023, 43, 7–15. [Google Scholar] [CrossRef]
- Sterck, F.F.; Vos, M.A.; Hannula, S.E.S.; de Goede, S.S.; de Vries, W.W.; den Ouden, J.J.; Nabuurs, G.J.G.; van der Putten, W.W.; Veen, C.G. Optimizing Stand Density for Climate-Smart Forestry: A Way Forward towards Resilient Forests with Enhanced Carbon Storage under Extreme Climate Events. Soil. Biol. Biochem. 2021, 162, 108396. [Google Scholar] [CrossRef]
- Hu, W.J.; Pang, H.D.; Hu, X.Y.; Hu, J.L.; Li, K. Influences of Different Management Measures on Morphological Characteristics and Yield of Low Yielding Phyllostachys edulis Forest of Bamboo Shoots in Southern Hubei Province. J. Southwest For. Univ. 2019, 39, 86–91. [Google Scholar] [CrossRef]
- Vospernik, S.; Sterba, H. Do Competition-Density Rule and Self-Thinning Rule Agree? Ann. For. Sci. 2015, 72, 379–390. [Google Scholar] [CrossRef]
- Fransson, P.; Brännström, A.; Franklin, O. A tree’s quest for light–optimal height and diameter growth under a shading canopy. Tree Physiol 2020, 41, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.S.; Duan, A.G.; Zhang, J.G.; Sun, J.J. Studies on Variable-density and Variable-exponent Taper Equation for Cunninghamia lanceolata Plantations. South China For. Sci. 2021, 49, 51–56+60. [Google Scholar] [CrossRef]
- Shi, H.H.; Xue, Q.; Yu, Z.L.; Wang, C.H. Effects of Density and Species Proportion on Intraspecific and Interspecific Interactions Between Salt Marsh Plants During Seed Germination. Chin. J. Plant Ecol. 2023, 47, 77–87. [Google Scholar] [CrossRef]
- Feng, H.; Xue, L. Competition-Density Effect of Tree Organs in Acacia Auriculiformis Stands. J. For. Res. 2019, 30, 891–898. [Google Scholar] [CrossRef]
- Yang, G.J.; Hu, H.F.; Sun, H.G.; Zhang, J.G.; Duan, A.G. The Influences of Stand Age, Planting Density and Self-Thinning on Relationship between Size Ineauality and Periodic Annual Increment in Chinese Fir (Cunninghamia lanceolata) Plantations. Sci. Silvae Sin. 2019, 55, 127–136. [Google Scholar] [CrossRef]
- Chen, B.; Liu, S.; Yu, J.; Huang, Y.; Yu, S.; Liu, H.; Zhang, T.; Liu, X.; Jin, G.; Chen, W.; et al. Stand Biomass of Pinus Sylvestris Var. Mongolica Plantations Benefits from High Density Monocultures in the Boreal Zone. For. Ecosyst. 2024, 11, 100222. [Google Scholar] [CrossRef]
- Long, J.N.; Vacchiano, G. A Comprehensive Framework of Forest Stand Property–Density Relationships: Perspectives for Plant Population Ecology and Forest Management. Ann. For. Sci. 2014, 71, 325–335. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-1597-4. [Google Scholar]
- Looney, C.E.; Brodie, E.G.; Fettig, C.J.; Ritchie, M.W.; Knapp, E.E. Ecological Forestry Treatments Affect Fine-Scale Attributes within Large Experimental Units to Influence Tree Growth, Vigor, and Mortality in Ponderosa Pine/White Fir Forests in California, U.S. For. Ecol. Manag. 2024, 561, 121814. [Google Scholar] [CrossRef]
Density | Plot | Stand Density (Steams/ha) | Mean DBH (cm) | Altitude (m) |
---|---|---|---|---|
D1 | 1 | 1450 | 10.29 | 116 |
2 | 1500 | 11.24 | 114 | |
3 | 1325 | 10.96 | 101 | |
D2 | 4 | 1900 | 10.41 | 107 |
5 | 1950 | 11.31 | 109 | |
6 | 2100 | 11.29 | 111 | |
D3 | 7 | 2675 | 11.25 | 108 |
8 | 2600 | 9.41 | 115 | |
9 | 2575 | 10.67 | 110 | |
D4 | 10 | 3300 | 10.47 | 120 |
11 | 3250 | 10.85 | 128 | |
12 | 3175 | 10.36 | 126 |
Density | Growth Period (d) | |||||
---|---|---|---|---|---|---|
6 | 12 | 18 | 24 | 30 | 2190 | |
D1 | 0.07 ± 0.03 a (0.78% ± 0.20% a) | 0.27 ± 0.07 a 3.15% ± 0.98% a) | 0.41 ± 0.10 a (4.69% ± 0.95% a) | 0.84 ± 0.32 a (9.45% ± 1.86% a) | 2.50 ± 0.19 a (29.72% ± 8.20% a) | 8.75 ± 1.89 a (100.00% ± 0.00% a) |
D2 | 0.06 ± 0.02 a (0.70% ± 0.13% a) | 0.23 ± 0.03 a (3.01% ± 1.26% a) | 0.59 ± 0.10 a (7.17% ± 0.64% a) | 0.83 ± 0.13 a (10.13% ± 1.56% a) | 1.91 ± 0.41 a (24.39% ± 10.63% a) | 8.36 ± 2.02 a (100.00% ± 0.00% a) |
D3 | 0.04 ± 0.02 a (0.53% ± 0.32% a) | 0.26 ± 0.07 a (3.42% ± 0.45% a) | 0.59 ± 0.12 a (8.35% ± 3.88% a) | 0.84 ± 0.08 a (11.75% ± 4.38% a) | 1.99 ± 0.60 a (28.07% ± 13.14% a) | 7.84 ± 2.72 a (100.00% ± 0.00% a) |
D4 | 0.05 ± 0.02 a (0.47% ± 0.17% a) | 0.25 ± 0.07 a (2.83% ± 1.18% a) | 0.70 ± 0.29 a (7.51% ± 2.58% a) | 0.86 ± 0.34 a (9.47% ± 3.96% a) | 2.34 ± 0.78 a (26.48% ± 11.48% a) | 9.42 ± 3.34 a (100.00% ± 0.00% a) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Guan, F.; Zhou, X.; Li, Z.; Fu, D.; Li, M. Characterization of Shoot Growth and Carbon Accumulation in Moso Bamboo Based on Different Stand Densities. Forests 2025, 16, 1098. https://doi.org/10.3390/f16071098
Zhang X, Guan F, Zhou X, Li Z, Fu D, Li M. Characterization of Shoot Growth and Carbon Accumulation in Moso Bamboo Based on Different Stand Densities. Forests. 2025; 16(7):1098. https://doi.org/10.3390/f16071098
Chicago/Turabian StyleZhang, Xuan, Fengying Guan, Xiao Zhou, Zheng Li, Dawei Fu, and Minkai Li. 2025. "Characterization of Shoot Growth and Carbon Accumulation in Moso Bamboo Based on Different Stand Densities" Forests 16, no. 7: 1098. https://doi.org/10.3390/f16071098
APA StyleZhang, X., Guan, F., Zhou, X., Li, Z., Fu, D., & Li, M. (2025). Characterization of Shoot Growth and Carbon Accumulation in Moso Bamboo Based on Different Stand Densities. Forests, 16(7), 1098. https://doi.org/10.3390/f16071098