Spatial Distribution of Timbered Soil Physicochemical Properties and Their Effects on the Vegetation Indices in Tongzhou, Beijing
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sample Points Setting
3.2. Sampling Method
3.3. Experiments Testing
3.4. Statistical and Analysis
3.4.1. Vegetation Indices Calculation
3.4.2. Data Organization and Statistical Methods
4. Results
4.1. Overall Assessment of the Soil Nutrients
4.2. Spatial Distribution of the Soil Physicochemical Properties
4.3. Spatial Distribution of the Herb Diversity and Vegetation Growth Index
4.4. Relationships Between Soil Nutrients and Vegetation Growth
5. Discussion
5.1. Causes of Differences in Soil Nutrients Composition
5.2. Effects of the Soil Nutrients on the Vegetation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saha, J.K.; Selladurai, R.; Coumar, M.V.; Dotaniya, M.L.; Kundu, S.; Patra, A.K. Soil and its role in the ecosystem. In Soil pollution—An emerging threat to agriculture, Environmental Chemistry for a Sustainable World; Springer: Singapore, 2017; Volume 10. [Google Scholar]
- Binkley, D.; Vitousek, P. Soil nutrient availability. In Plant Physiological Ecology: Field Methods and Instrumentation; Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 75–96. [Google Scholar]
- Schoenholtz, S.H.; Miegroet, H.V.; Burger, J.A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335–356. [Google Scholar] [CrossRef]
- Yuen, S.H.; Pollard, A.G. Determination of nitrogen in agricultural materials by the nessler reagent. II.—Micro-determinations in Plant Tissue and in Soil Extracts. J. Sci. Food Agric. 1954, 5, 364–369. [Google Scholar] [CrossRef]
- Rawls, W.J.; Gish, T.J.; Brakensiek, D.L. Estimating Soil Water Retention from Soil Physical Properties and Characteristics. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1991; Volume 16, pp. 213–234. [Google Scholar]
- Delgado, A.; Gómez, J.A. The Soil, Physical, Chemical and Biological Properties. In Principles of Agronomy for Sustainable Agriculture; Villalobos, F.J., Fereres, E., Villalobos, F.J., Fereres, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 15–26. [Google Scholar]
- Song, M.; Tang, Q.; Han, C.; Yuan, C.; Yang, Q.; Wei, J.; He, X.; Lv, X.; Collins, A.L. Divergent behaviour of soil nutrients imprinted by different land management practices in the Three Gorges Reservoir Area, China. Int. Soil Water Conserv. Res. 2024, 12, 896–907. [Google Scholar] [CrossRef]
- Lu, D.; Li, C.; Sokolwski, E.; Magen, H.; Chen, X.; Wang, H.; Zhou, J. Crop yield and soil available potassium changes as affected by potassium rate in rice-wheat systems. Field Crops Res. 2017, 214, 38–44. [Google Scholar] [CrossRef]
- Aye, H.N.; Masih, S. Role of Nutrients in Plants, Its Deficiency and Management. Int. J. Plant Soil Sci. 2023, 35, 129–136. [Google Scholar] [CrossRef]
- Rengel, Z. Soil pH, Soil Health and Climate Change. In Soil Health and Climate Change; Singh, B.P., Cowie, A.L., Chan, K.Y., Singh, B.P., Cowie, A.L., Chan, K.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 69–85. [Google Scholar]
- Kavitha, S.; Kotadi, C. Soil nutrient prediction for paddy cultivation via soil fertility and pH trained hybrid architecture: Recommendations based on nutrient deficiency. Intell. Decis. Technol. 2024, 18, 685–703. [Google Scholar]
- Li, R.; Gao, M.; Zexin, X.U.; Wang, J.; Xie, X. Hyper-spectral estimation of soil organic matter in apple orchard based on CWT. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 734. [Google Scholar]
- Dai, W.; Li, Y.; Fu, W.; Jiang, P.; Zhao, K.; Li, Y.; Penttinen, P. Spatial variability of soil nutrients in forest areas: A case study from subtropical China. J. Plant Nutr. Soil Sci. 2018, 181, 827–835. [Google Scholar] [CrossRef]
- Beijing Municipal Bureau of Landscaping and Landscaping. Notice of the Beijing Municipal Bureau of Landscaping and Landscaping on the Implementation Standard of the Expenses Required for “Restoration of Vegetation and Forestry Production Conditions”. 2020. Available online: https://yllhj.beijing.gov.cn/zwgk/fgwj/qtwj/202101/t20210121_2228701.shtml (accessed on 21 January 2021).
- Beijing Tongzhou District Forestry Work Station. Beijing Tongzhou District Forestry Work Station 2023 Budget Statement. 2023. Available online: https://www.bjtzh.gov.cn/bjtz/xxfb/202302/1639327.shtml (accessed on 6 November 2024).
- Margenot, A.J.; Singh, B.R.; Rao, I.M.; Sommer, R. Phosphorus fertilization and management in soils of Sub-Saharan Africa. In Soil Phosphorus; CRC Press: Boca Raton, FL, USA, 2016; pp. 151–208. [Google Scholar]
- Guichao, Z.; Sun, X.; Li, S.; Yu, L.; Yue, Z.; Wang, C.; Wei, N.; Xu, X. Characteristics of soil organic carbon and its components in different green space types in Tongzhou District of Beijing, China. Acta Agric. Zhejiangensis 2023, 35, 1699–1708. [Google Scholar]
- Quanhe, Y.; Yonglong, A. Comprehensive Evaluation of Soil Fertility in Yujiawu Town of Tongzhou District Using Geostatistics and GIS. Southwest China J. Agric. Sci. 2019, 32, 882–891. [Google Scholar]
- Yonglong, A.; Zha, G.; Sun, X.; Li, S.; Yu, L.; Yue, Z.; Wang, C.; Wei, N.; Xu, X. Analysis of the Sources and Risk Assessment of PAHs in the Soil of a Reconstruction Area in Tongzhou, Beijing. Hydrogeol. Eng. Geol. 2017, 44, 112–120. [Google Scholar]
- Beijing Municipal Bureau of Agriculture and Rural Affairs. Beijing Tongzhou District Third National Soil Survey Pilot Achievement Rated as “Excellent”. 2023. Available online: https://nyncj.beijing.gov.cn/nyj/snxx/gzdt/436312830/index.html (accessed on 3 December 2024).
- Rui, Z. Spatial Variability of Soil Properties and Comprehensive Evaluation of Fertility of Cultivated Land in the Suburbs of Beijing; Beijing Forestry University: Beijing, China, 2015. [Google Scholar]
- Forster, J.C. Soil sampling, handling, storage and analysis. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 49–121. [Google Scholar]
- Kara, D.; Özsavaşçi, C.; Alkan, M. Investigation of suitable digestion methods for the determination of total phosphorus in soils. Talanta 1997, 44, 2027–2032. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, M.J.; Liang, Y.J.; Guan, Z.Y.; Li, J.D. Soil Nitrogen Forms and Availability in Paddy Soil under Different Fertilization Methods. Adv. Mater. Res. 2015, 1073, 643–647. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Surleva, A.; Angelova, L. Plant available potassium and phosphorus in arable soil: A comparative study on testing methods. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1251, 012008. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Smits, J.; Huisman, J. The GDL Vulnerability Index (GVI). Soc. Indic. Res. 2024, 174, 721–741. [Google Scholar] [CrossRef]
- Gonenc, A.; Ozerdem, M.S.; Emrullah, A.C.A.R. Comparison of NDVI and RVI Vegetation Indices Using Satellite Images. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019. [Google Scholar]
- Mohanasundaram, S.; Baghel, T.; Thakur, V.; Udmale, P.; Shrestha, S. Reconstructing NDVI and land surface temperature for cloud cover pixels of Landsat-8 images for assessing vegetation health index in the Northeast region of Thailand. Environ. Monit. Assess. 2022, 195, 211. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhao, D.; Wu, S.; Dai, E.; Gao, J. Using the NDVI to analyze trends and stability of grassland vegetation cover in Inner Mongolia. Theor. Appl. Climatol. 2019, 135, 1629–1640. [Google Scholar] [CrossRef]
- Bostan, P. Basic kriging methods in geostatistics. Yuz. Yıl Univ. J. Agric. Sci. 2017, 27, 10–20. [Google Scholar]
- Asuero, A.G.; Sayago, A.; González, A.G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, R.; Xia, S.; Wang, L.; Liu, C.; Zhang, R.; Fan, Z.; Chen, F.; Liu, Y. Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Glob. Ecol. Conserv. 2019, 19, e00663. [Google Scholar] [CrossRef]
- Wang, D.; He, N.; Wang, Q.; Lü, Y.; Wang, Q.; Xu, Z.; Zhu, J. Effects of Temperature and Moisture on Soil Organic Matter Decomposition Along Elevation Gradients on the Changbai Mountains, Northeast China. Pedosphere 2016, 26, 399–407. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.; Liu, K.; Wang, L.; Wang, K.; Zhou, Y. Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses. Agric. Water Manag. 2015, 159, 115–122. [Google Scholar] [CrossRef]
- Ismayilov, A.I.; Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Levy, G.J. Soil Salinity Type Effects on the Relationship between the Electrical Conductivity and Salt Content for 1:5 Soil-to-Water Extract. Sustainability 2021, 13, 3395. [Google Scholar] [CrossRef]
- Henderson, G.S. Soil Organic Matter: A Link Between Forest Management and Productivity; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 1995; pp. 419–435. [Google Scholar]
- Pankhurst, C.E.; Ophel-Keller, K.; Doube, B.M.; Gupta, V.V.S.R. Biodiversity of soil microbial communities in agricultural systems. Biodivers. Conserv. 1996, 5, 197–209. [Google Scholar] [CrossRef]
- Ramos, T.B.; Gonçalves, M.C.; Branco, M.A.; Brito, D.; Rodrigues, S.; Sánchez-Pérez, J.M.; Sauvage, S.; Prazeres, Â.; Martins, J.C.; Fernandes, M.L.; et al. Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal. Catena 2015, 127, 177–190. [Google Scholar] [CrossRef]
- Fan, T.; Stewart, B.; Yong, W.; Junjie, L.; Guangye, Z. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agric. Ecosyst. Environ. 2005, 106, 313–329. [Google Scholar] [CrossRef]
- Huang, B.; Sun, W.; Zhao, Y.; Zhu, J.; Yang, R.; Zou, Z.; Ding, F.; Su, J. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 2007, 139, 336–345. [Google Scholar] [CrossRef]
- Alt, F.; Oelmann, Y.; Herold, N.; Schrumpf, M.; Wilcke, W. Phosphorus partitioning in grassland and forest soils of Germany as related to land-use type, management intensity, and land use–related pH. J. Plant Nutr. Soil Sci. 2011, 174, 195–209. [Google Scholar] [CrossRef]
- Liu, J.; Gu, Z.; Shao, H.; Zhou, F.; Peng, S. N–P stoichiometry in soil and leaves of Pinus massoniana forest at different stand ages in the subtropical soil erosion area of China. Environ. Earth Sci. 2016, 75, 1091. [Google Scholar] [CrossRef]
- Jordán, M.M.; Navarro-Pedreno, J.; García-Sánchez, E.; Mateu, J.; Juan, P. Spatial dynamics of soil salinity under arid and semi-arid conditions: Geological and environmental implications. Environ. Geol. 2004, 45, 448–456. [Google Scholar] [CrossRef]
- El Sabagh, A.; Hossain, A.; Barutçular, C.; Iqbal, M.A.; Islam, M.S.; Fahad, S.; Sytar, O.; Çiğ, F.; Meena, R.S.; Erman, M. Consequences of Salinity Stress on the Quality of Crops and Its Mitigation Strategies for Sustainable Crop Production: An Outlook of Arid and Semi-arid Regions. In Environment, Climate, Plant and Vegetation Growth; Fahad, S., Sytar, O., Çiğ, F., Meena, R.S., Erman, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 503–533. [Google Scholar]
- Gent, J.A.; Ballard, R. Impact of Intensive Forest Management Practices on the Bulk Density of Lower Coastal Plain and Piedmont Soils. South. J. Appl. For. 1985, 9, 44–48. [Google Scholar] [CrossRef]
- Pathirana, S.; Lambot, S.; Krishnapillai, M.; Cheema, M.; Smeaton, C.; Galagedara, L. Integrated ground-penetrating radar and electromagnetic induction offer a non-destructive approach to predict soil bulk density in boreal podzolic soil. Geoderma 2024, 450, 117028. [Google Scholar] [CrossRef]
- Chu, L.; Yuan, S.; Chen, D.; Kang, Y.; Shaghaleh, H.; Okla, M.K.; AbdElgawad, H.; Hamoud, Y.A. Changes in salinity and vegetation growth under different land use types during the reclamation in coastal saline soil. Chemospher 2024, 366, 143427. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [PubMed]
- Veresoglou, S.D.; Voulgari, O.K.; Sen, R.; Mamolos, A.P.; Veresoglou, D.S. Effects of Nitrogen and Phosphorus Fertilization on Soil pH-Plant Productivity Relationships in Upland Grasslands of Northern Greece. Pedosphere 2011, 21, 750–752. [Google Scholar] [CrossRef]
- Rorison, I.H. The Effects of Soil Acidity on Nutrient Availability and Plant Response. In Effects of Acid Precipitation on Terrestrial Ecosystems; Hutchinson, T.C., Havas, M., Eds.; Springer: Boston, MA, USA, 1980; pp. 283–304. [Google Scholar]
- Yang, X.; Liu, C.; Liang, C.; Wang, T.; Tian, J. The Phosphorus-Iron Nexus: Decoding the Nutrients Interaction in Soil and Plant. Int. J. Mol. Sci. 2024, 25, 6992. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct. Plant Biol. 2001, 28, 897–906. [Google Scholar] [CrossRef]
- Zheng, Z.; Parent, L.E.; MacLeod, J.A. Influence of soil texture on fertilizer and soil phosphorus transformations in Gleysolic soils. Can. J. Soil Sci. 2003, 83, 395–403. [Google Scholar] [CrossRef]
- Magid, J.; Tiessen, H.; Condron, L.M. Chapter 11—Dynamics of Organic Phosphorus in Soils under Natural and Agricultural Ecosystems. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1996; pp. 429–466. [Google Scholar]
- Kato, T. Effects of potassium on cell elongation and division in plants. J. Plant Physiol. 2007, 294, 294–298. [Google Scholar]
- Mazur, P.; Gozdowski, D.; Wnuk, A. Relationships between Soil Electrical Conductivity and Sentinel-2-Derived NDVI with pH and Content of Selected Nutrients. Agronomy 2022, 12, 354. [Google Scholar] [CrossRef]
- Naher, N.; Zannat, J.S.; Sharna, J.J. Detection of vegetation cover change in the Southern region of Bangladesh using the Normalized Difference Vegetation Index (NDVI) and Climate Smart Agriculture (CSA) practices. J. Appl. Nat. Sci. 2024, 16, 435–444. [Google Scholar] [CrossRef]
- Dam, R.; Mehdi, B.; Burgess, M.; Madramootoo, C.; Mehuys, G.; Callum, I. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil Tillage Res. 2005, 84, 41–53. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Gaitán, J.J.; Bran, D.; Oliva, G.; Ciari, G.; Nakamatsu, V.; Salomone, J.; Ferrante, D.; Buono, G.; Massara, V.; Humano, G.; et al. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecol. Indic. 2013, 34, 181–191. [Google Scholar] [CrossRef]
No. | Indicator | Formula | |
---|---|---|---|
1 | Normalized difference vegetation index | (1) | |
2 | Difference vegetation index | (2) | |
3 | Ratio vegetation index | (3) | |
4 | Soil-adjusted vegetation index | (4) | |
5 | Green vegetation index | (5) |
Indicator | M | SD | CV | Min | Max |
---|---|---|---|---|---|
EC (us/m) | 2.232 | 0.411 | 0.184 | 1.340 | 3.087 |
pH | 7.618 | 0.303 | 0.040 | 6.700 | 8.367 |
BD (g/cm3) | 1.488 | 0.126 | 0.084 | 1.264 | 1.803 |
SOM (%) | 1.678 | 0.870 | 0.518 | 0.569 | 3.363 |
TN (g/kg) | 0.394 | 0.284 | 0.721 | 0.047 | 1.117 |
AN (mg/kg) | 71.272 | 31.772 | 0.446 | 15.050 | 133.910 |
TP (g/kg) | 0.774 | 0.220 | 0.285 | 0.300 | 1.381 |
AP (mg/kg) | 41.535 | 13.566 | 0.327 | 17.474 | 71.881 |
TK (g/kg) | 20.500 | 3.251 | 0.159 | 11.879 | 27.799 |
AK (mg/kg) | 283.135 | 183.052 | 0.647 | 41.920 | 757.152 |
Indicator | M | SD | CV | Min | Max |
---|---|---|---|---|---|
EC (us/m) | 2.421 | 0.459 | 0.190 | 1.840 | 4.040 |
pH | 8.173 | 0.319 | 0.039 | 7.200 | 8.800 |
BD (g/cm3) | 1.507 | 0.117 | 0.078 | 1.261 | 1.753 |
SOM (%) | 1.282 | 0.623 | 0.485 | 0.018 | 2.824 |
TN (g/kg) | 0.461 | 0.220 | 0.476 | 0.081 | 0.861 |
AN (mg/kg) | 80.680 | 32.704 | 0.405 | 16.100 | 172.130 |
TP (g/kg) | 0.867 | 0.287 | 0.331 | 0.442 | 2.164 |
AP (mg/kg) | 38.342 | 14.765 | 0.385 | 14.698 | 65.774 |
TK (g/kg) | 20.406 | 3.084 | 0.151 | 13.271 | 25.655 |
AK (mg/kg) | 255.288 | 135.168 | 0.529 | 42.382 | 654.580 |
Indicator | M | SD | CV | Min | Max |
---|---|---|---|---|---|
EC (us/m) | 2.156 | 0.484 | 0.224 | 1.253 | 3.250 |
pH | 7.679 | 0.255 | 0.033 | 7.200 | 8.167 |
BD (g/cm3) | 1.495 | 0.133 | 0.089 | 1.102 | 1.691 |
SOM (%) | 1.277 | 0.561 | 0.440 | 0.537 | 2.610 |
TN (g/kg) | 0.381 | 0.293 | 0.768 | 0.067 | 0.908 |
AN (mg/kg) | 83.588 | 40.955 | 0.490 | 26.810 | 174.370 |
TP (g/kg) | 0.815 | 0.220 | 0.270 | 0.454 | 1.589 |
AP (mg/kg) | 42.533 | 15.507 | 0.365 | 20.916 | 78.681 |
TK (g/kg) | 19.271 | 2.649 | 0.137 | 14.775 | 23.458 |
AK (mg/kg) | 227.994 | 115.140 | 0.505 | 34.563 | 501.568 |
Indicator | M | SD | CV | Min | Max |
---|---|---|---|---|---|
EC (us/m) | 2.155 | 0.398 | 0.185 | 1.393 | 2.940 |
pH | 7.651 | 0.269 | 0.035 | 6.767 | 8.133 |
BD (g/cm3) | 1.439 | 0.107 | 0.075 | 1.163 | 1.665 |
SOM (%) | 1.195 | 0.655 | 0.548 | 0.157 | 2.672 |
TN (g/kg) | 0.285 | 0.226 | 0.792 | 0.026 | 0.808 |
AN (mg/kg) | 87.759 | 45.096 | 0.514 | 15.470 | 180.880 |
TP (g/kg) | 0.837 | 0.217 | 0.259 | 0.428 | 1.401 |
AP (mg/kg) | 49.481 | 16.762 | 0.339 | 21.360 | 83.123 |
TK (g/kg) | 16.866 | 1.924 | 0.114 | 11.657 | 20.534 |
AK (mg/kg) | 231.548 | 148.702 | 0.642 | 34.974 | 631.056 |
Indicator | M | SD | CV | Min | Max |
---|---|---|---|---|---|
R (species) | 2.654 | 1.364 | 0.514 | 0.000 | 8.000 |
CVG (NG) | 72.120 | 26.989 | 0.374 | 2.000 | 100.000 |
H (cm) | 15.885 | 37.954 | 2.389 | 3.300 | 479.867 |
NDVI | 0.326 | 0.069 | 0.213 | 0.151 | 0.473 |
RVI | 1.997 | 0.296 | 0.148 | 1.356 | 2.801 |
GVI | 0.308 | 0.058 | 0.187 | 0.129 | 0.443 |
SAVI | 0.489 | 0.104 | 0.213 | 0.227 | 0.711 |
DVI | 13,590.783 | 1916.895 | 0.141 | 7511.5 | 20,015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, S.; Li, X.; Sun, H.; Hou, S.; Qi, X.; Cheng, J.; Zhang, N.; Dai, H. Spatial Distribution of Timbered Soil Physicochemical Properties and Their Effects on the Vegetation Indices in Tongzhou, Beijing. Forests 2025, 16, 327. https://doi.org/10.3390/f16020327
Zhang Y, Li S, Li X, Sun H, Hou S, Qi X, Cheng J, Zhang N, Dai H. Spatial Distribution of Timbered Soil Physicochemical Properties and Their Effects on the Vegetation Indices in Tongzhou, Beijing. Forests. 2025; 16(2):327. https://doi.org/10.3390/f16020327
Chicago/Turabian StyleZhang, Yufei, Senyang Li, Xiuzhong Li, Haibo Sun, Shuailing Hou, Xiujin Qi, Jin Cheng, Nan Zhang, and Heran Dai. 2025. "Spatial Distribution of Timbered Soil Physicochemical Properties and Their Effects on the Vegetation Indices in Tongzhou, Beijing" Forests 16, no. 2: 327. https://doi.org/10.3390/f16020327
APA StyleZhang, Y., Li, S., Li, X., Sun, H., Hou, S., Qi, X., Cheng, J., Zhang, N., & Dai, H. (2025). Spatial Distribution of Timbered Soil Physicochemical Properties and Their Effects on the Vegetation Indices in Tongzhou, Beijing. Forests, 16(2), 327. https://doi.org/10.3390/f16020327