Composition and Diversity of Understory and Canopy Species Vary Along a Logging Gradient in an African Semi-Deciduous Tropical Rainforest
Abstract
:1. Introduction
- How do the species richness, diversity, and composition of understory and canopy species vary between the management blocks and across the logging gradient?
- How do the beta diversity (turnover and nestedness) of species composition of understory and canopy species vary along the logging gradient?
- Does the canopy species composition in the plots of logged and unlogged forest areas resemble those indicator species found within the plots of the characterized successional stages in Budongo?
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Sampling Plot Design
2.4. Field Data Collection
2.5. Statistical Analysis
2.5.1. Species Accumulation and Rarefaction Curves
2.5.2. Alpha Diversity and Species Composition of Understory and Canopy Tree Species
2.5.3. Beta Diversity of Understory and Canopy Species
2.5.4. Comparison in Species Composition of Logged and Unlogged Forests with the Characterized Forest Successional Stages in Budongo Forest
3. Results
3.1. Patterns of Composition Among the Management Blocks and Logging Intensities
3.2. General Patterns of Species Richness and Diversity Between Management Blocks and Species Along Logging Gradient
3.2.1. Variation in Species Richness Between Management Blocks and Among Logging Intensities
3.2.2. Variation in Species Diversity Between Management Blocks and Among Logging Intensities
3.2.3. Species Diversity for Understory and Canopy Tree Species Along Logging Gradient
3.2.4. Beta Diversity of Understory and Canopy Species Across Logging Intensities
3.3. Patterns of Species Composition in Logged and Unlogged Forest Areas Compared with Successional Stages Characterised in Budongo Forest
4. Discussion
4.1. Variation in Species Richness and Composition Along Logging Gradient
4.2. Variation in Alpha Diversity of Understory and Canopy Tree Species
4.3. Variation in Beta Diversity of Understory and Canopy Tree Species Along Logging Gradient
4.4. Comparison of Species Composition in Logged and Unlogged Forests with Successional Stages in Budongo Forest
5. Management Implications
6. Limitation of the Study
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chazdon, R.L.; Norden, N.; Colwell, R.K.; Chao, A. Monitoring recovery of tree diversity during tropical forest restoration: Lessons from long-term trajectories of natural regeneration. Philos. Trans. R. Soc. B 2022, 378, 20210069. [Google Scholar] [CrossRef] [PubMed]
- Cazzolla Gatti, R.; Reich, P.B.; Gamarra, J.G.P.; Crowther, T.; Hui, C.; Morera, A.; Bastin, J.-F.; de-Miguel, S.; Nabuurs, G.-J.; Svenning, J.-C.; et al. The number of tree species on Earth. Proc. Natl. Acad. Sci. USA 2022, 119, e2115329119. [Google Scholar] [CrossRef] [PubMed]
- Spicer, M.E.; Mellor, H.; Carson, W.P. Seeing beyond the trees: A comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology 2020, 101, e02974. [Google Scholar] [CrossRef] [PubMed]
- FAO; UNEP. The State of the World’s Forests 2020. In Forests, Biodiversity and People; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Putz, F.E.; Zuidema, P.A.; Synnott, T.; Peña-Claros, M.; Pinard, M.A.; Sheil, D.; Vanclay, J.K.; Sist, P.; Gourlet-Fleury, S.; Griscom, B.; et al. Sustaining conservation values in selectively logged tropical forests: The attained and the attainable. Conserv. Lett. 2012, 5, 296–303. [Google Scholar] [CrossRef]
- Piponiot, C.; Rutishauser, E.; Derroire, G.; Putz, F.E.; Sist, P.; West, T.A.P.; Descroix, L.; Guedes, M.C.; Coronado, E.N.H.; Kanashiro, M.; et al. Optimal strategies for ecosystem services provision in Amazonian production forests. Environ. Res. Lett. 2019, 14, 124090. [Google Scholar] [CrossRef]
- DeArmond, D.; Emmert, F.; Pinto, A.C.M.; Lima, A.J.N.; Higuchi, N. A Systematic Review of Logging Impacts in the Amazon Biome. Forests 2023, 14, 81. [Google Scholar] [CrossRef]
- Riutta, T.; Malhi, Y.; Kho, L.K.; Marthews, T.R.; Huasco, W.H.; Khoo, M.; Tan, S.; Turner, E.; Reynolds, G.; Both, S.; et al. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob. Chang. Biol. 2018, 24, 2913–2928. [Google Scholar] [CrossRef]
- Sassen, M.; Sheil, D.; Giller, K.E.; ter Braak, C.J.F. Complex contexts and dynamic drivers: Understanding four decades of forest loss and recovery in an East African protected area. Biol. Conserv. 2013, 159, 257–268. [Google Scholar] [CrossRef]
- Ministry of Water and Environment (MWE). State of Uganda’s Forestry. Government of Uganda, Kampala. 2016. Available online: https://www.mwe.go.ug/sites/default/files/State%20of%20Uganda’s%20Forestry-2015.pdf (accessed on 25 October 2024).
- Dawkins, H.C. The Management of Natural High Forest with Special Reference to Uganda; Commonwealth Forestry Institute Paper No.34; Commonwealth Forestry Institute: Dinchope, UK, 1958. [Google Scholar]
- NFA. Forest Management Plan for Budongo Central Forest Reserve for the Period 2011–2021; Ministry of Water and Environment: Kampala, Uganda, 2011. [Google Scholar]
- Dawkins, H.C. The refining of natural high forest and limitations on its improvement. Emp. For. Rev. 1955, 34. [Google Scholar]
- Anon. National Timber Trade and FLEGT Solutions for Uganda; WWF-Uganda: Kampala, Uganda, 2012. [Google Scholar]
- Amaral, M.R.M.; Lima, A.J.N.; Higuchi, F.G.; dos Santos, J.; Higuchi, N. Dynamics of Tropical Forest Twenty-Five Years after Experimental Logging in Central Amazon Mature Forest. Forests 2019, 10, 89. [Google Scholar] [CrossRef]
- Bousfield, C.G.; Cerullo, G.R.; Massam, M.R.; Edwards, D.P. Protecting environmental and socio-economic values of selectively logged tropical forests in the Anthropocene. Adv. Ecol. Res. 2020, 62, 1–52. [Google Scholar] [CrossRef]
- Hayward, R.M.; Banin, L.F.; Burslem, D.F.; Chapman, D.S.; Philipson, C.D.; Cutler, M.E.; Reynolds, G.; Nilus, R.; Dent, D.H. Three decades of post-logging tree community recovery in naturally regenerating and actively restored dipterocarp forest in Borneo. For. Ecol. Manag. 2021, 488, 119036. [Google Scholar] [CrossRef]
- Pillay, R.; Hua, F.; Loiselle, B.A.; Bernard, H.; Fletcher, R.J. Multiple stages of tree seedling recruitment are altered in tropical forests degraded by selective logging. Ecol. Evol. 2018, 8, 8231–8242. [Google Scholar] [CrossRef] [PubMed]
- Brancalion, P.H.S.; de Almeida, D.R.A.; Vidal, E.; Molin, P.G.; Sontag, V.E.; Souza, S.E.X.F.; Schulze, M.D. Fake legal logging in the Brazilian Amazon. Sci. Adv. 2018, 4, eaat1192. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, E.A.T.; Skole, D.L.; Costa, O.B.; Pedlowski, M.A.; Samek, J.H.; Miguel, E.P. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 2020, 369, 1378–1382. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Bartholomew, D.C.; Hayward, R.; Burslem, D.F.R.P.; Bittencourt, P.R.L.; Chapman, D.; Bin Suis, M.A.F.; Nilus, R.; O’Brien, M.J.; Reynolds, G.; Rowland, L.; et al. Bornean tropical forests recovering from logging at risk of regeneration failure. Glob. Chang. Biol. 2024, 30, e17209. [Google Scholar] [CrossRef]
- Keller, N.; Niklaus, P.A.; Ghazoul, J.; Marfil, T.; Godoong, E.; Philipson, C.D. Biodiversity consequences of long-term active forest restoration in selectively-logged tropical rainforests. For. Ecol. Manag. 2023, 549, 121414. [Google Scholar] [CrossRef]
- Ojoatre, S.; Barlow, J.; Jacobs, S.R.; Rufino, M.C. Recovery of aboveground biomass, soil carbon stocks and species diversity in tropical montane secondary forests of East Africa. For. Ecol. Manag. 2024, 552, 121569. [Google Scholar] [CrossRef]
- Rutten, G.; Ensslin, A.; Hemp, A.; Fischer, M. Forest structure and composition of previously selectively logged and non-logged montane forests at Mt. Kilimanjaro. For. Ecol. Manag. 2015, 337, 61–66. [Google Scholar] [CrossRef]
- Berry, N.J.; Phillips, O.L.; Ong, R.C.; Hamer, K.C. Impacts of selective logging on tree diversity across a rainforest landscape: The importance of spatial scale. Landsc. Ecol. 2008, 23, 915–929. [Google Scholar] [CrossRef]
- Fakhry, A.M.; Khazzan, M.M.; Aljedaani, G.S. Impact of disturbance on species diversity and composition of Cyperus conglomeratus plant community in southern Jeddah, Saudi Arabia. J. King Saud Univ. Sci. 2018, 32, 600–605. [Google Scholar] [CrossRef]
- Sahu, P.; Sagar, R.; Singh, J. Tropical forest structure and diversity in relation to altitude and disturbance in a Biosphere Reserve in central India. Appl. Veg. Sci. 2008, 11, 461–470. [Google Scholar] [CrossRef]
- Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.; Gardner, T.A.; Barlow, J.; Peres, C.; Bradshaw, C.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef]
- Kutnar, L.; Nagel, T.A.; Kermavnar, J. Effects of Disturbance on Understory Vegetation across Slovenian Forest Ecosystems. Forests 2019, 10, 1048. [Google Scholar] [CrossRef]
- Martin, P.A.; Newton, A.C.; Pfeifer, M.; Khoo, M.; Bullock, J.M. Impacts of tropical selective logging on carbon storage and tree species richness: A meta-analysis. For. Ecol. Manag. 2015, 356, 224–233. [Google Scholar] [CrossRef]
- Sahoo, T.; Acharya, L.; Panda, P.C. Structure and composition of tree species in tropical moist deciduous forests of Eastern Ghats of Odisha, India, in response to human-induced disturbances. Environ. Sustain. 2020, 3, 69–82. [Google Scholar] [CrossRef]
- Sullivan, M.K.; Vleminckx, J.; Bissiemou, P.A.M.; Niangadouma, R.; Manoushka Ilambi Mayoungou, M.I.; Temba, J.L.; Bénédet, F.; Abernethy, K.; Queenborough, S.A.; Comita, L.S. Low-intensity logging alters species and functional composition, but does not negatively impact key ecosystem services in a Central African tropical forest. Glob. Ecol. Conserv. 2024, 53, e02996. [Google Scholar] [CrossRef]
- Senior, R.A.; Hill, J.K.; Benedick, S.; Edwards, D.P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Chang. Biol. 2018, 24, 1267–1278. [Google Scholar] [CrossRef]
- Arcanjo, F.A.; Barufi, G.M.; Torezan, J.M.D. Selective logging that occurred decades ago is still impacting aboveground biomass and tree assemblage structure in Brazilian semi-deciduous seasonal Atlantic forest fragments. For. Ecol. Manag. 2023, 535, 120895. [Google Scholar] [CrossRef]
- Memiaghe, H.R.; Lutz, J.A.; Korte, L.; Alonso, A.; Kenfack, D. Ecological Importance of Small Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon. PLoS ONE 2016, 11, e0154988. [Google Scholar] [CrossRef]
- Ntonmen, A.F.Y.; Zapfack, L.; Chimi, D.C.; Kabelong, B.L.R.; Tsopmejio, T.I.; Neba, B.N.; Nanfack, A.D.; Madountsap, T.N.; Ngoukwa, G.; Mounmemi, K.H.; et al. Floristic diversity and structure of understory in semi-deciduous forests in Cameroon. J. Biodivers. Environ. Sci. 2020, 16, 103–110. [Google Scholar]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; Wiley: New York, NY, USA, 1996; p. 544. [Google Scholar]
- Sheil, D.; Burslem, D.F.R.P. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 2003, 18, 18–26. [Google Scholar] [CrossRef]
- Kumar, P.; Chen, H.Y.H.; Thomas, S.C.; Shahi, C. Linking resource availability and heterogeneity to understorey species diversity through succession in boreal forest of Canada. J. Ecol. 2018, 106, 1266–1276. [Google Scholar] [CrossRef]
- Canham, C.D.; Murphy, L. The demography of tree species response to climate: Sapling and canopy tree survival. Ecosphere 2017, 8, e01701. [Google Scholar] [CrossRef]
- Edwards, D.P.; Tobias, J.A.; Sheil, D.; Meijaard, E.; Laurance, W.F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 2014, 29, 511–520. [Google Scholar] [CrossRef]
- Mwavu, N.E.; Witkowski, E.T.F. Woody Species Alpha-diversity and Species Abundance Distributions in an African Semi-deciduous Tropical Rain Forest. Biotropica 2015, 47, 424–434. [Google Scholar] [CrossRef]
- Myers, J.A.; Chase, J.M.; Jiménez, I.; Jørgensen, P.M.; Araujo-Murakami, A.; Paniagua-Zambrana, N.; Seidel, R. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 2013, 16, 151–157. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Mouillot, D.; Graham, N.A.; Villéger, S.; Mason, N.W.; Bellwood, D.R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Sheil, D. Species Richness, Tropical Forest Dynamics and Sampling: Questioning Cause and Effect. Oikos 1996, 76, 587. [Google Scholar] [CrossRef]
- Sheil, D.; Bongers, F. Interpreting forest diversity-productivity relationships: Volume values, disturbance histories and alternative inferences. For. Ecosyst. 2020, 7, 6. [Google Scholar] [CrossRef]
- Bousfield, C.G.; Massam, M.R.; Peres, C.A.; Edwards, D.P. Large-scale impacts of selective logging on canopy tree beta-diversity in the Brazilian Amazon. J. Appl. Ecol. 2023, 60, 1181–1193. [Google Scholar] [CrossRef]
- Yano, S.; Aoyagi, R.; Shogoro, F.; Sugau, J.B.; Pereira, J.T.; Kitayama, K. Effects of logging on landscape-level tree diversity across an elevational gradient in Bornean tropical forests. Glob. Ecol. Conserv. 2021, 29, e01739. [Google Scholar] [CrossRef]
- Bahati, J.B. Effects of Logging on Environmental Factors, Natural Regeneration, and Distribution of Selected Mahogany Species in Budongo Forest Reserve, Uganda. Ph.D. Thesis, Makerere University, Kampala, Uganda, 2005; p. 231. [Google Scholar]
- Mwima, P.M.; Obua, J.; Oryem-Origa, H. Effect of logging on the natural regeneration of Khaya anthotheca in Budongo Forest Reserve, Uganda. Int. For. Rev. 2001, 3, 131–135. [Google Scholar]
- Plumptre, A. Changes following 60 years of selective timber harvesting in the Budongo Forest Reserve, Uganda. For. Ecol. Manag. 1996, 89, 101–113. [Google Scholar] [CrossRef]
- Gliniars, R. Tree Growth and Tree Regeneration in Two East African Rain Forests as Related to the Abiotic Environment After Human Disturbance. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 2010; p. 198. [Google Scholar]
- Kirika, J.M.; Böhning-Gaese, K.; Dumbo, B.; Farwig, N. Reduced abundance of late-successional trees but not of seedlings in heavily compared with lightly logged sites of three East African tropical forests. J. Trop. Ecol. 2010, 26, 533–546. [Google Scholar] [CrossRef]
- Babweteera, F.; Sheil, D.; Reynolds, V.; Plumptre, A.J.; Zuberbuhler, K.; Hill, C.M.; Webber, A.; Tweheyo, M. Environmental and anthropogenic changes in and around Budongo forest reserve. In The Ecological Impact of Long-Term Changes in Africa’s Rift Valley; Nova Science Pub Inc.: Hauppauge, NY, USA, 2012. [Google Scholar]
- Pain, A.; Marquardt, K.; Lindh, A.; Hasselquist, N.J. What Is Secondary about Secondary Tropical Forest? Rethinking Forest Landscapes. Hum. Ecol. 2021, 49, 239–247. [Google Scholar] [CrossRef]
- Psistaki, K.; Tsantopoulos, G.; Paschalidou, A.K. An Overview of the Role of Forests in Climate Change Mitigation. Sustainability 2024, 16, 6089. [Google Scholar] [CrossRef]
- Eggeling, W.J. Observations on the Ecology of the Budongo Rain Forest, Uganda. J. Ecol. 1947, 34, 20–87. [Google Scholar] [CrossRef]
- Howard, P.C. Nature Conservation in Uganda’s Tropical Forest Reserves; IUCN: Gland, Switzerland; Cambridge, UK, 1991. [Google Scholar]
- Babweteera, F.; Mawa, C.; Asiimwe, C.; Okwir, E.; Muhanguzi, G.; Okimat, J.P.; Robinson, S. Budongo Forest: A paradigm shift in conservation? In Conservation and Development in Uganda; Sandbrook, C., Cavanagh, J.C., Tumusiime, D.M., Eds.; Routledge: London, UK, 2018; pp. 104–121. [Google Scholar]
- Mawa, C.; Babweteera, F.; Tumusiime, D.M. Conservation Outcomes of Collaborative Forest Management in a Medium Altitude Semideciduous Forest in Mid-western Uganda. J. Sustain. For. 2020, 41, 461–480. [Google Scholar] [CrossRef]
- Karani, P.K.; Kiwanuka, L.S.; Sizomu-Kagolao, M.E. Forest Management Plan for Budongo Forest for the Period 1997–2007; Ministry of Water, Lands and Environment: Kampala, Uganda, 1997. [Google Scholar]
- Dawkins, H. The construction of commercial volume tables for tropical forest trees. Emp. For. Rev. 1954, 33, 61–70. [Google Scholar]
- Alder, D. Uganda Forestry Rehabilitation Project Data Processing for the Budongo Forest Inventory; Report Da-UG-4; Lands and Environment: Kampala, Uganda, 1991; p. 43. [Google Scholar]
- Oloya, J.; Malinga, G.M.; Nyafwono, M.; Akite, P.; Nakadai, R.; Holm, S.; Valtonen, A. Recovery of fruit-feeding butterfly communities in Budongo Forest Reserve after anthropogenic disturbance. For. Ecol. Manag. 2021, 491, 119087. [Google Scholar] [CrossRef]
- Odokonyero, G.G.O. Pitsawn Timber Production in Natural Forests of Uganda; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Babweteera, F.; Plumptre, A.; Obua, J. Effect of gap size and age on climber abundance and diversity in Budongo Forest Reserve, Uganda. Afr. J. Ecol. 2001, 38, 230–237. [Google Scholar] [CrossRef]
- Plumptre, A.J.; Reynolds, V.; Bakuneeta, C. The Effects of Selective Logging in Monodominant Tropical Forests on Biodiversity; Final Report of Overseas Development Administration (ODA) Project; University of Oxford: Oxford, UK, 1997. [Google Scholar]
- Kalema, J.; Hamilton, A. Field Guide to the Forest Trees of Uganda: For Identification and Conservation; CABI Publishing: Oxon, UK, 2020. [Google Scholar]
- Katende, A.; Birnie, A.; Tengnas, B. Useful Trees and Shrubs for Uganda: Identification, Propogation and Management for Agricultural and Pastoral Communi-ties. Regional Soil Conservation Unit. 1995. Available online: https://www.cifor-icraf.org/publications/downloads/Publications/PDFS/b09383.pdf (accessed on 25 October 2024).
- Polhill, R.M. Flora of Tropical East Africa; A. A Balkema: Rotterdam, The Netherlands, 1952. [Google Scholar]
- Hubbell, S.P.; Foster, R.B. Diversity of canopy trees in a neotropical forest and implications for conservation. In Tropical Rain Forest: Ecology and Management; Sutton, S.L., Whitmore, T.C., Chadwick, A.C., Eds.; Blackwell Scientific Publications: Oxford, UK, 1983; pp. 25–41. [Google Scholar]
- Kenfack, D.; Thomas, D.W.; Chuyong, G.; Condit, R. Rarity and abundance in a diverse African forest. Biodivers. Conserv. 2007, 16, 2045–2074. [Google Scholar] [CrossRef]
- Bohlman, S.; Pacala, S. A forest structure model that determines crown layers and partitions growth and mortality rates for landscape-scale applications of tropical forests. J. Ecol. 2012, 100, 508–518. [Google Scholar] [CrossRef]
- Condit, R.; Hubbell, S.P.; Lafrankie, J.V.; Sukumar, R.; Manokaran, N.; Foster, R.B.; Ashton, P.S. Species-Area and Species-Individual Relationships for Tropical Trees: A Comparison of Three 50-ha Plots. J. Ecol. 1996, 84, 549. [Google Scholar] [CrossRef]
- Willis, A.D. Rarefaction, Alpha Diversity, and Statistics. Front. Microbiol. 2019, 10, 2407. [Google Scholar] [CrossRef]
- Menhinick, E.F. A Comparison of Some Species-Individuals Diversity Indices Applied to Samples of Field Insects. Ecology 1964, 45, 859–861. [Google Scholar] [CrossRef]
- Magurran, A.E. Measuring Biological Diversity; Blackwell: Oxford, UK, 2004. [Google Scholar]
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- Pielou, E.C. The Interpretation of Ecological Data; John Wiley and Sons: New York, NY, USA, 1984; 263p. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanche, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6-2. 2022. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 15 May 2024).
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 11 December 2023).
- Poudyal, B.H.; Maraseni, T.; Cockfield, G. Impacts of forest management on tree species richness and composition: Assessment of forest management regimes in Tarai landscape Nepal. Appl. Geogr. 2019, 111, 102078. [Google Scholar] [CrossRef]
- Baselga, A.; Orme, D.; Villeger, S.; Bortoli, J.D.; Leprieur, F.; Logez, M.; Martinez-Santalla, S.; Martin-Devasa, R.; Gomez-Rodriguez, C.; Crujeiras, R.M.; et al. Betapart: Partitioning Beta Diversity into Turnover and Nestedness Components, R Package Version betapart_1.6.tar.gz. 2023. Available online: https://cran.r-project.org/web/packages/betapart/index.html (accessed on 10 May 2024).
- Fitzpatrick, M.C.; Mokany, K.; Manion, G.; Lisk, M.; Fitzpatrick, M.M.C.; Rcpp, L.; Rcpp, I. Package ‘gdm’. A Toolkit with Functions to Fit, Plot, and Summarize Generalized Dissimilarity Models: CRANRepository, R Package Version 1.4.2.2. 2021. Available online: https://cran.r-project.org/web/packages/betapart/betapart.pdf (accessed on 15 July 2024).
- Kruskal, J.B. Nonmetric multidimensional scaling: A numerical method. Psychometrika 1964, 29, 115–129. [Google Scholar] [CrossRef]
- Beals, E.W. Bray-Curtis Ordination: An Effective Strategy for Analysis of Multivariate Ecological Data. Adv. Ecol. Res. 1984, 14, 1–55. [Google Scholar] [CrossRef]
- Mwavu, E.N. Human Impact, Plant Communities, Diversity and Regeneration in Budongo Forest Reserve, North-Western Uganda. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2007; 214p. [Google Scholar]
- Connell, J.H. Diversity in Tropical Rain Forests and Coral Reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef]
- Cannon, C.H.; Peart, D.R.; Leighton, M. Tree Species Diversity in Commercially Logged Bornean Rainforest. Science 1998, 281, 1366–1368. [Google Scholar] [CrossRef]
- Sheil, D.; Sayer, J.A.; O’Brien, T. Tree Species Diversity in Logged Rainforests. Science 1999, 284, 1587. [Google Scholar] [CrossRef]
- Silva de Miranda, P.L.; Dexter, K.G.; Swaine, M.D.; de Oliveira-Filho, A.T.; Hardy, O.J.; Fayolle, A. Dissecting the difference in tree species richness between Africa and South America. Proc. Natl Acad. Sci. USA 2022, 119, e2112336119. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Renner, S.S. Global Correlations in Tropical Tree Species Richness and Abundance Reject Neutrality. Science 2012, 335, 464–467. [Google Scholar] [CrossRef]
- Hu, J.; Herbohn, J.; Chazdon, R.L.; Baynes, J.; Wills, J.; Meadows, J.; Sohel, S.I. Recovery of species composition over 46 years in a logged Australian tropical forest following different intensity silvicultural treatments. For. Ecol. Manag. 2018, 409, 660–666. [Google Scholar] [CrossRef]
- Letcher, S.G.; Chazdon, R.L. Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northern Costa Rica. Biotropica 2009, 41, 608–617. [Google Scholar] [CrossRef]
- De Avila, A.L.; Ruschel, A.R.; de Carvalho, J.O.P.; Mazzei, L.; Silva, J.N.M.; Lopes, J.d.C.; Araujo, M.M.; Dormann, C.F.; Bauhus, J. Medium-term dynamics of tree species composition in response to silvicultural intervention intensities in a tropical rain forest. Biol. Conserv. 2015, 191, 577–586. [Google Scholar] [CrossRef]
- Eilu, G.; Hafashimana, D.L.N.; Kasenene, J.M. Density and species diversity of trees in four tropical forests of the Albertine rift, western Uganda. Divers. Distrib. 2004, 10, 303–312. [Google Scholar] [CrossRef]
- Bitariho, R.; Babaasa, D.; Byaruhanga, A. Changes in floristic composition, diversity and anthropogenic perturbations in an east African tropical forest. Afr. J. Ecol. 2023, 61, 815–828. [Google Scholar] [CrossRef]
- Makana, J.; Thomas, S.C. Impacts of selective logging and agricultural clearing on forest structure, floristic composition and diversity, and timber tree regeneration in the Ituri Forest, Democratic Republic of Congo. Biodivers. Conserv. 2006, 15, 1375–1397. [Google Scholar] [CrossRef]
- Imani, G.; Kalume, J.; Marchant, R.; Calders, K.; Batumike, R.; Bulonvu, F.; Cuni-Sanchez, A. Tree diversity and carbon stocks in the Itombwe Mountains of eastern DR Congo. Biotropica 2021, 53, 1594–1605. [Google Scholar] [CrossRef]
- Senyanzobe, J.M.V.; Mulei, J.M.; Bizuru, E.; Nsengimuremyi, C. Impact of Pteridium aquilinum on vegetation in Nyungwe Forest, Rwanda. Heliyon 2020, 6, e04806. [Google Scholar] [CrossRef]
- Eilu, G. Liana abundance in three tropical rain Forest of western Uganda. Selbyana 2000, 21, 30–37. [Google Scholar]
- Martínez-Izquierdo, L.; García, M.M.; Powers, J.S.; Schnitzer, S.A. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest. Ecology 2016, 97, 215–224. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Walter, P.; Carson, W.P. Lianas suppress tree regeneration and diversity in treefall gaps. Ecol. Lett. 2010, 13, 849–857. [Google Scholar] [CrossRef]
- Bezerra, T.G.; Ruschel, A.R.; Emmert, F.; Nascimento, R.G.M. Changes caused by forest logging in structure and floristic diversity of natural regeneration: Relationship between climate variables and forest dynamics in the eastern Amazon. For. Ecol. Manag. 2021, 482, 118862. [Google Scholar] [CrossRef]
- Martínez-Ruiz, M.; Arroyo-Rodríguez, V.; Arasa-Gisbert, R.; Hernández-Ruedas, M.A.; San-José, M. Maintenance of different life stages of old-growth forest trees in deforested tropical landscapes. Ecology 2024, 105, e4273. [Google Scholar] [CrossRef] [PubMed]
- Draper, F.C.; Asner, G.P.; Coronado, E.N.H.; Baker, T.R.; García-Villacorta, R.; Pitman, N.C.A.; Fine, P.V.A.; Phillips, O.L.; Gómez, R.Z.; Guerra, C.A.A.; et al. Dominant tree species drive beta diversity patterns in western Amazonia. Ecology 2019, 100, e02636. [Google Scholar] [CrossRef] [PubMed]
- Guclu, C.; Luk, C.; Ashton, L.A.; Abbas, S.; Boyle, M.J.W. Beta diversity subcomponents of plant species turnover and nestedness reveal drivers of community assembly in a regenerating subtropical forest. Ecol. Evol. 2024, 14, e70233. [Google Scholar] [CrossRef] [PubMed]
- Socolar, J.B.; Gilroy, J.J.; Kunin, W.E.; Edwards, D.P. How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol. Evol. 2016, 31, 67–80. [Google Scholar] [CrossRef]
- Yao, Z.; Yang, X.; Wang, B.; Shao, X.; Wen, H.; Deng, Y.; Zhang, Z.; Cao, M.; Lin, L. Multidimensional beta-diversity across local and regional scales in a Chinese subtropical forest: The role of forest structure. Ecol. Evol. 2023, 13, e10607. [Google Scholar] [CrossRef]
- Zhao, Z.; He, L.; Li, G.; Ma, S.; Cui, M.; Liu, Y.; Chai, Y. Partitioning beta diversity of dry and hot valley vegetation in the Nujiang River in Southwest China. Front. Ecol. Evol. 2023, 11, 1199874. [Google Scholar] [CrossRef]
- van Breugel, M.; Bongers, F.; Norden, N.; Meave, J.A.; Amissah, L.; Chanthorn, W.; Chazdon, R.; Craven, D.; Farrior, C.; Hall, J.S.; et al. Feedback loops drive ecological succession: Towards a unified conceptual framework. Biol. Rev. 2024, 99, 928–949. [Google Scholar] [CrossRef]
- Meiners, S.J.; Cadotte, M.W.; Fridley, J.D.; Pickett, S.T.A.; Walker, L.R. Is successional research nearing its climax? New approaches for understanding dynamic communities. Funct. Ecol. 2015, 29, 154–164. [Google Scholar] [CrossRef]
- Norden, N.; Angarita, H.A.; Bongers, F.; Martínez-Ramos, M.; Granzow-de la Cerda, I.; van Breugel, M.; Lebrija-Trejos, E.; Meave, J.A.; Vandermeer, J.; Williamson, G.B.; et al. Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proc. Natl. Acad. Sci. USA 2015, 112, 8013–8018. [Google Scholar] [CrossRef]
- Poorter, L.; Amissah, L.; Bongers, F.; Hordijk, I.; Kok, J.; Laurance, S.G.W.; Lohbeck, M.; Martínez-Ramos, M.; Matsuo, T.; Meave, J.A.; et al. Successional theories. Biol. Rev. 2023, 98, 2049–2077. [Google Scholar] [CrossRef] [PubMed]
- Kardol, P.; Souza, L.; Classen, A.T. Resource availability mediates the importance of priority effects in plant community assembly and ecosystem function. Oikos 2013, 122, 84–94. [Google Scholar] [CrossRef]
- Matsuo, T.; Martínez-Ramos, M.; Bongers, F.; van der Sande, M.T.; Poorter, L. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. J. Ecol. 2021, 109, 2871–2884. [Google Scholar] [CrossRef] [PubMed]
Logging Intensities | Compartment | Area (ha) | Logging Method and Periods | Years Since Last Logged (Yr) | ||
---|---|---|---|---|---|---|
Mechanical | Timber Volume a (m3 ha−1) | Pit-Sawn b | ||||
Heavily logged | B4 | 751 | 1941–1942 | 34.8 | 1982–1992, 2008–2010 | 13 |
B1 | 582 | 1935; 1982–1986 | 41.4 | 1993/1994 | 29 | |
W21 | 1116 | 1963–1964 | 40.2 | 1995–1997 | 28 | |
W19 | 881 | 1962–1963 | 36.1 | 1980–1983 | 40 | |
N5 | 568 | 1954 | 35.6 | 1995/1996 | 27 | |
Lightly logged | B2 | 603 | 1936–1938 | 30.8 | None | 85 |
W20 | 572 | 1963–1964 | 51.5 | None | 59 | |
N1 | 489 | 1945 | 58.7 | None | 78 | |
Unlogged | N15 | 1042 | None | None | None | None |
Total | 9 | 6604 |
Variable | Heavily Logged | Lightly Logged | Unlogged |
---|---|---|---|
(a) Understory trees | |||
Species richness | 71 ac | 72 bc | 59 c |
Average species richness (species/ha) | 5.7 a | 9.6 b | 23.6 cb, ca |
Family | 32 ab, ac | 29 b | 26 c |
Shannon–Wiener index (H′) | 1.88 a ± 0.11 | 1.99 b ± 0.11 | 2.01 ca ± 0.06 |
Fisher’s α index (α) | 22.68 a ± 1.02 | 26.53 b ± 0.92 | 35.81 ca, cb ± 0.92 |
Pielou’s Evenness (J′) | 0.70 a ± 0.02 | 0.61 b ± 0.03 | 0.56 c ± 0.02 |
(b) Canopy trees | |||
Species richness | 100 a | 92 b | 86 ca |
Average species richness (species/ha) | 8.0 a | 12.3 ba | 34.4 ca, cb |
Family | 34 ac | 31 b | 29 c |
Shannon–Wiener index (H′) | 2.28 a ± 0.07 | 2.32 b ± 0.06 | 3.81 ca ± 0.11 |
Fisher’s α index (α) | 18.97 a ± 0.76 | 20.42 b ± 0.791 | 27.41 ca, cb ± 1.65 |
Pielou’s evenness (J′) | 0.73 ac ± 0.02 | 0.71 bc ± 0.02 | 0.63 c ± 0.02 |
Location | Name of the Forest | Tree Diameter (DBH) Category | Shannon–Weiner Diversity Index (H′) | Reference |
---|---|---|---|---|
Albertine Eco-region | Budongo Forest-Uganda | ≥10 cm | 2.03–3.99 | Our study |
Budongo Forest-Uganda | ≥10 cm | 2.09–5.04 | [59] | |
Budongo Forest-Uganda | ≥10 cm | 1.61–3.51 | [43] | |
Budongo Forest-Uganda | ≥10 cm | 1.73–2.81 | [99] | |
Bwindi Forest-Uganda | ≥10 cm | 2.94–3.56 | [99] | |
Kasyoha Forest-Uganda | ≥10 cm | 3.08–3.18 | [99] | |
Kibale Forest-Uganda | ≥10 cm | 2.69–2.83 | [99] | |
Echuya Forest-Uganda | ≥10 cm | 2.15 | [100] | |
Ituri Forest-DR Congo | ≥10 cm | 1.1–1.60 | [101] | |
Itombwe Forest-DR Congo | ≥10 cm | 2.11–3.08 | [102] | |
Nyungwe-Rwanda | ≥10 cm | 1.54–3.25 | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kissa, D.O.; Nzunda, E.F.; Tweheyo, M.; Lussetti, D.; Ssekuubwa, E.; Sheil, D. Composition and Diversity of Understory and Canopy Species Vary Along a Logging Gradient in an African Semi-Deciduous Tropical Rainforest. Forests 2025, 16, 6. https://doi.org/10.3390/f16010006
Kissa DO, Nzunda EF, Tweheyo M, Lussetti D, Ssekuubwa E, Sheil D. Composition and Diversity of Understory and Canopy Species Vary Along a Logging Gradient in an African Semi-Deciduous Tropical Rainforest. Forests. 2025; 16(1):6. https://doi.org/10.3390/f16010006
Chicago/Turabian StyleKissa, David Ocama, Emmanuel Fred Nzunda, Mnason Tweheyo, Daniel Lussetti, Enock Ssekuubwa, and Douglas Sheil. 2025. "Composition and Diversity of Understory and Canopy Species Vary Along a Logging Gradient in an African Semi-Deciduous Tropical Rainforest" Forests 16, no. 1: 6. https://doi.org/10.3390/f16010006
APA StyleKissa, D. O., Nzunda, E. F., Tweheyo, M., Lussetti, D., Ssekuubwa, E., & Sheil, D. (2025). Composition and Diversity of Understory and Canopy Species Vary Along a Logging Gradient in an African Semi-Deciduous Tropical Rainforest. Forests, 16(1), 6. https://doi.org/10.3390/f16010006