Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Descriptions
2.2. Field Data Collection and Analysis
2.3. Statistical Analyses
3. Results
3.1. Slash Amount after Ground-Based Harvesting Operations
3.2. Visual Disturbance and Rutted Depth after Ground-Based Harvesting Operations
3.3. Soil Compaction after Ground-Based Harvesting Operations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lundbäck, M.; Häggström, C.; Nordfjell, T. Worldwide trends in methods for harvesting and extracting industrial roundwood. Int. J. For. Eng. 2021, 32, 202–215. [Google Scholar] [CrossRef]
- Bacescu, N.M.; Cadei, A.; Moskalik, T.; Wiśniewski, M.; Talbot, B.; Grigolato, S. Efficiency assessment of fully mechanized harvesting system through the use of fleet management system. Sustainability 2022, 14, 16751. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. Forest Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Nazari, M.; Eteghadipour, M.; Zarebanadkouki, M.; Ghorbani, M.; Dippold, M.A.; Bilyera, N.; Zamanian, K. Impacts of logging-associated compaction on forest soils: A meta-analysis. Front. For. Glob. Chang. 2021, 4, 780074. [Google Scholar] [CrossRef]
- Labelle, E.R.; Hansson, L.; Högbom, L.; Jourgholami, M.; Laschi, A. Strategies to mitigate the effects of soil physical disturbances caused by forest machinery: A comprehensive review. Curr. For. Rep. 2022, 8, 20–37. [Google Scholar] [CrossRef]
- Labelle, E.R.; Poltorak, B.J.; Jaeger, D. The role of brush mats in mitigating machine-induced soil disturbances: An assessment using absolute and relative soil bulk density and penetration resistance. Can. J. For. Res. 2019, 49, 164–178. [Google Scholar] [CrossRef]
- Baek, K.; Lee, E.; Choi, H.; Cho, M.; Choi, Y.; Han, S. Impact on soil physical properties related to a high mechanization level in the row thinning of a Korean pine Stand. Land 2022, 11, 329. [Google Scholar] [CrossRef]
- Bolding, M.C.; Kellogg, L.D.; Davis, C.T. Soil compaction and visual disturbance following an integrated mechanical forest fuel reduction operation in Southwest Oregon. Int. J. Forest Eng. 2009, 20, 47–56. [Google Scholar] [CrossRef]
- DeArmond, D.; Ferraz, J.B.S.; Emmert, F.; Lima, A.J.N.; Higuchi, N. An assessment of soil compaction after logging operations in central Amazonia. Forest Sci. 2020, 66, 230–241. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and how much, do harvesting activities affect forest soil, regeneration and stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Nikooy, M.; Pignatti, G.; Venanzi, R.; Lo Monaco, A. Morphology, growth and architecture response of Beech (Fagus orientalis Lipsky) and Maple tree (Acer velutinum Boiss.) seedlings to soil compaction stress caused by mechanized logging operations. Forests 2019, 10, 771. [Google Scholar] [CrossRef]
- Lee, E.; Eu, S.; Li, Q. Assessment of soil erosion potential from the disturbed surface of skid trails in small shovel harvesting system. Front. Environ. Sci. 2022, 10, 756848. [Google Scholar] [CrossRef]
- Marra, E.; Wictorsson, R.; Bohlin, J.; Marchi, E.; Nordfjell, T. Remote measuring of the depth of wheel ruts in forest terrain using a drone. Int. J. Forest Eng. 2021, 32, 224–234. [Google Scholar] [CrossRef]
- Latterini, F.; Dyderski, M.K.; Horodecki, P.; Picchio, R.; Venanzi, R.; Lapin, K.; Jagodziński, A.M. The effects of forest oeprations and silviculture treatments on litter decomposition rate: A meta-analysis. Current Forestry Reports 2023, 9, 276–290. [Google Scholar] [CrossRef]
- Latterini, F.; Dyderski, M.K.; Horodecki, P.; Rawlik, M.; Stefanono, W.; Högbom, L.; Venanzi, R.; Picchio, R.; Jagodziński, A.M. A meta-analysis of the effects of ground-based extraction technologies on fine roots in forest soils. Ladn. Degrad. Dev. 2023, 35, 9–21. [Google Scholar] [CrossRef]
- Korea Forest Service. Available online: https://forest.go.kr (accessed on 28 January 2024).
- Laffan, M.; Jordan, G.; Duhig, N. Impacts on soils from cable-logging steep slopes in northeastern Tasmania, Australia. Forest Ecol. Manag. 2001, 144, 91–99. [Google Scholar] [CrossRef]
- Lee, E.; Li, Q.; Eu, S.; Han, S.K.; Im, S. Assessing the impacts of log extraction by typical small shovel logging system on soil physical and hydrological properties in the Republic of Korea. Heliyon 2020, 6, e03544. [Google Scholar] [CrossRef]
- Marra, E.; Laschi, A.; Fabiano, F.; Foderi, C.; Neri, F.; Mastrolonardo, G.; Nordfjell, T.; Marchi, E. Impacts of wood extraction on soil: Assessing rutting and soil compaction caused by skidding and forwarding by means of traditional and innovative methods. Eur. J. Forest Res. 2022, 141, 71–86. [Google Scholar] [CrossRef]
- Latterini, F.; Spinelli, R.; Venanzi, R.; Picchio, R. Acorn Review: Focus on ground-based extraction systems: Is skidding really more impactful than forwarding? Forest Ecol. Manag. 2024, 551, 121514. [Google Scholar] [CrossRef]
- Bergstrom, R.M.; Page-Dumroese, D.S. How Much Soil Disturbance Can Be Expected as a Result of Southern Pine Beetle Suppression Activities? Gen. Tech. Rep. RMRS-GTR-399; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2019; 11 p.
- Napper, C.; Howes, S.; Page-Dumroese, D. Soil-Disturbance Field Guide; San Dimas Technology and Development Center, United States Department of Agriculture, Forest Service: San Dimas, CA, USA, 2009; Volume 0819, p. 1815-SDTDC. 103 p.
- Reeves, D.; Page-Dumroese, D.; Coleman, M. Detrimental Soil Disturbance Associated with Timber Harvest Systems on National Forests in the Northern Region; Res. Pap. RMRS-RP-89; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011; 12 p.
- Brown, J.K. Handbook for Inventorying Downed Woody Material; USDA gen. tech. Rep. INT-16; United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Research Station: Ogden, UT, USA, 1974.
- Kizha, A.R.; Han, H.-S. Forest residues recovered from whole-tree timber harvesting operations. Eur. J. For. Eng. 2015, 1, 46–55. [Google Scholar]
- Poltorak, B.J.; Labelle, E.R.; Jaeger, D. Soil displacement during ground-based mechanized forest operations using mixed-wood brush mats. Soil Till. Res. 2018, 179, 96–104. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Jeong, I.-S.; Cho, M.-J.; Mun, H.-S.; Oh, J.-H.; Han, S.-K. Prediction of moisture content changes during natural drying of forest residues using load-cell-mounted drying platforms. Sens. Mater. 2021, 33, 3873–3884. [Google Scholar] [CrossRef]
- Naik, A.P.; Ghosh, B.; Pekkat, S. Estimating soil hydraulic properties using mini disk infiltrometer. ISH J. Hydraul. Eng. 2019, 25, 62–70. [Google Scholar] [CrossRef]
- R Development Core Team. Available online: https://www.r-project.org/ (accessed on 28 March 2024).
- Cambi, M.; Giannetti, F.; Bottalico, F.; Travaglini, D.; Nordfjell, T.; Chirici, G.; Marchi, E. Estimating machine impact on strip roads via close-range photogrammetry and soil parameters: A case study in central Italy. iForest Biogeosci. For. 2018, 11, 148–154. [Google Scholar] [CrossRef]
- Han, S.-K.; Han, H.-S.; Page-Dumroese, D.S.; Johnson, L.R. Soil compaction associated with cut-to-length and whole-tree harvesting of a coniferous forest. Can. J. For. Res. 2009, 39, 976–989. [Google Scholar] [CrossRef]
- Labelle, E.R.; Jaeger, D.; Poltorak, B.J. Assessing the ability of hard wood and softwood brush mats to distribute applied loads. Croat. J. For. Eng. 2015, 36, 227–242. [Google Scholar]
Unit | Area (ha) | DBH a (cm) | Height (m) | Tree per ha | Soil Texture (%) | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||
S1 | 1.5 | 26.0 | 15.2 | 365 | 55.1 | 19.9 | 25.0 |
S2 | 1.3 b | 26.0 | 15.0 | 420 | 54.8 | 19.8 | 25.4 |
Disturbance Class | Description | |
---|---|---|
0 | No traces of machines or logs Organic layer is present and intact | |
1 | Tracks are identified but are faint and shallow Topsoil is exposed or mixed with subsoil | |
2 | Visible track marks are moderately deep Topsoil is partially present or mixed with subsoil | |
3 | Evident track marks are deep Topsoil is removed and subsoil is exposed |
Unit | Soil Depth (cm) | n | Track | Center | Reference | p-Value |
---|---|---|---|---|---|---|
S1 | 0–10 | 30 | 1.26 ± 0.18 a | 0.94 ± 0.22 b | 0.87 ± 0.22 b | <0.001 |
10–20 | 30 | 1.31 ± 0.13 a | 1.07 ± 0.20 b | 1.05 ± 0.22 b | <0.001 | |
S2 | 0–10 | 15 | 1.41 ± 0.13 a | 1.22 ± 0.22 a | 0.89 ± 0.25 b | <0.001 |
10–20 | 15 | 1.36 ± 0.17 a | 1.24 ± 0.15 ab | 0.99 ± 0.21 b | 0.0034 |
Unit | n | Track | Center | Reference | p-Value |
---|---|---|---|---|---|
S1 | 30 | 0.94 ± 0.57 a | 2.34 ± 2.19 ab | 2.23 ± 1.67 b | 0.0090 |
S2 | 15 | 0.79 ± 0.64 a | 1.28 ± 1.26 ab | 2.24 ± 1.77 b | 0.0101 |
Source | Soil Bulk Density (0–10 cm Depth) | Soil Bulk Density (10–20 cm Depth) | Hydraulic Conductivity | ||||||
---|---|---|---|---|---|---|---|---|---|
DF | F | p-Value | DF | F | p-Value | DF | F | p-Value | |
Extraction methods | 1 | 14.705 | <0.01 | 1 | 18.750 | <0.01 | 1 | 1.258 | <0.01 |
Disturbance type | 2 | 45.663 | <0.01 | 2 | 19.685 | <0.01 | 2 | 7.904 | <0.01 |
Extraction methods × Disturbance type | 2 | 4.072 | <0.01 | 2 | 2.258 | 0.109 | 2 | 1.754 | 0.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Kim, T.; Mun, H.-S.; Oh, J.-H.; Han, S.-K. Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations. Forests 2024, 15, 985. https://doi.org/10.3390/f15060985
Lee E, Kim T, Mun H-S, Oh J-H, Han S-K. Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations. Forests. 2024; 15(6):985. https://doi.org/10.3390/f15060985
Chicago/Turabian StyleLee, Eunjai, Taehyung Kim, Ho-Seong Mun, Jae-Heun Oh, and Sang-Kyun Han. 2024. "Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations" Forests 15, no. 6: 985. https://doi.org/10.3390/f15060985
APA StyleLee, E., Kim, T., Mun, H.-S., Oh, J.-H., & Han, S.-K. (2024). Assessing the Extent and Severity of the Impact on Forest Soils of Two Different Fully Mechanized Timber Harvesting Operations. Forests, 15(6), 985. https://doi.org/10.3390/f15060985