Dispersion of Boletus-Type Spores Within and Beyond Beech Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Aerobiological Monitoring
2.3. Data Analysis
3. Results
3.1. Comparison of Meteorological Conditions at ST1–ST4
3.2. Short-Term Aerobiological Monitoring
3.3. Continuous Aerobiological Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Halbwachs, H.; Bässler, C. Gone with the Wind—A Review on Basidiospores of Lamellate Agarics. Mycosphere 2015, 6, 78–112. [Google Scholar] [CrossRef]
- Ingold, C.T.; Dann, V. Spore Discharge in Fungi Under Very High Surrounding Air-Pressure, and the Bubble-Theory of Ballistospore Release. Mycologia 1968, 60, 285. [Google Scholar] [CrossRef] [PubMed]
- Hassett, M.O.; Fischer, M.W.F.; Money, N.P. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops. PLoS ONE 2015, 10, e0140407. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chavez, R.L.; Patek, S.N.; Pringle, A.; Feng, J.J.; Chen, C.-H. Asymmetric drop coalescence launches fungal ballistospores with directionality. J. R. Soc. Interface 2017, 14, 20170083. [Google Scholar] [CrossRef]
- Iapichino, M.; Wang, Y.-W.; Gentry, S.; Pringle, A.; Seminara, A. A Precise Relationship Among Buller’s Drop, Ballistospore, and Gill Morphologies Enables Maximum Packing of Spores Within Gilled Mushrooms. Mycologia 2021, 113, 300–311. [Google Scholar] [CrossRef]
- Stolze-Rybczynski, J.L.; Cui, Y.; Stevens, M.H.H.; Davis, D.J.; Fischer, M.W.F.; Money, N.P. Adaptation of the Spore Discharge Mechanism in the Basidiomycota. PLoS ONE 2009, 4, e4163. [Google Scholar] [CrossRef]
- Zoberi, M.H. Horizontal distance of Ballistospore discharge. Trans. Br. Mycol. Soc. 1969, 52, 170-IN18. [Google Scholar] [CrossRef]
- Fischer, M.W.F.; Stolze-Rybczynski, J.L.; Cui, Y.; Money, N.P. How Far and How Fast Can Mushroom Spores Fly? Physical Limits on Ballistospore Size and Discharge Distance in the Basidiomycota. Fungal Biol. 2010, 114, 669–675. [Google Scholar] [CrossRef]
- Galante, T.E.; Horton, T.R.; Swaney, D.P. 95% of Basidiospores Fall Within 1 M of the Cap: A Field-and Modeling-Based Study. Mycologia 2011, 103, 1175–1183. [Google Scholar] [CrossRef]
- Dam, N. Spores Do Travel. Mycologia 2013, 105, 1618–1622. [Google Scholar] [CrossRef]
- Nordén, B.; Larsson, K.-H. Basidiospore dispersal in the old-growth forest fungus Phlebia centrifuga (Basidiomycetes). Nord. J. Bot. 2000, 20, 215–219. [Google Scholar] [CrossRef]
- Lagomarsino Oneto, D.; Golan, J.; Mazzino, A.; Pringle, A.; Seminara, A. Timing of fungal spore release dictates survival during atmospheric transport. Proc. Natl. Acad. Sci. USA 2020, 117, 5134–5143. [Google Scholar] [CrossRef]
- Haard, R.T.; Kramer, C.L. Periodicity of Spore Discharge in the Hymenomycetes. Mycologia 1970, 62, 1145–1169. [Google Scholar] [CrossRef]
- Li, D.-W. Release and dispersal of basidiospores from Amanita muscaria var. alba and their infiltration into a residence. Mycol. Res. 2005, 109, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.; Barbetti, M.J.; MacLeod, W.J.; Salam, M.U.; Renton, M. Timing of propagule release significantly alters the deposition area of resulting aerial dispersal. Divers. Distrib. 2010, 16, 288–299. [Google Scholar] [CrossRef]
- Hall, I.R.; Lyon, A.J.E.; Wang, Y.; Sinclair, L. Ectomycorrhizal Fungi with Edible Fruiting Bodies 2. Boletus Edulis. Econ. Bot. 1998, 52, 44–56. [Google Scholar] [CrossRef]
- Available online: https://www.grzyby.pl/grzyby-2022.htm (accessed on 18 November 2024).
- Küçüker, D.M. Influence of some ecological variables on wild mushroom (Boletus edulis) productivity. Artvin Coruh Univ. J. For. Fac. 2019, 20, 10–17. [Google Scholar] [CrossRef][Green Version]
- Parladé, J.; Martínez-Peña, F.; Pera, J. Effects of forest management and climatic variables on the mycelium dynamics and sporocarp production of the ectomycorrhizal fungus Boletus edulis. For. Ecol. Manag. 2017, 390, 73–79. [Google Scholar] [CrossRef]
- Wójcik, M.; Kasprzyk, I. Seasonality and intensity of airborne Boletus-type spores in relation to land use and weather pattern. IMA Fungus 2023, 14, 26. [Google Scholar] [CrossRef]
- Horner, W.E.; O’Neil, C.E.; Lehrer, S.B. Basidiospore aeroallergens. Clin. Rev. Allergy 1992, 10, 191–211. [Google Scholar] [CrossRef]
- Bank Danych o Lasach. b. d. Available online: https://www.bdl.lasy.gov.pl/portal/mapy (accessed on 18 November 2024).
- Available online: https://www.grzyby.pl/podsumowanie-sezonow.htm (accessed on 18 November 2024).
- Matlack, G.R. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 1993, 66, 185–194. [Google Scholar] [CrossRef]
- Hernández Trejo, F.; Muñoz Rodríguez, A.F.; Tormo Molina, R.; Silva Palacios, I. Airborne spores of Basidiomycetes in Mérida (SW Spain). Ann. Agric. Environ. Med. 2013, 20, 657–663. [Google Scholar]
- Redondo, M.A.; Berlin, A.; Boberg, J.; Oliva, J. Vegetation type determines spore deposition within a forest–agricultural mosaic landscape. FEMS Microbiol. Ecol. 2020, 96, fiaa082. [Google Scholar] [CrossRef]
- Kilic, M.; Altunoglu, M.K.; Akdogan, G.E.; Akpınar, S.; Taskın, E.; Erkal, A.H. Airborne fungal spore relationships with meteorological parameters and skin prick test results in Elazig, Turkey. J. Environ. Health Sci. Eng. 2020, 18, 1271–1280. [Google Scholar] [CrossRef]
- Grinn-Gofroń, A.; Çeter, T.; Pinar, N.M.; Bosiacka, B.; Çeter, S.; Keçeli, T.; Myśliwy, M.; Şahin, A.A.; Bogawski, P. Airborne Fungal Spore Load and Season Timing in the Central and Eastern Black Sea Region of Turkey Explained by Climate Conditions and Land Use. Agric. For. Meteorol. 2020, 295, 108191. [Google Scholar] [CrossRef]
- Available online: https://grzyby.pl/porownanie-sezonow-grzybobran.htm (accessed on 18 November 2024).
- Castillo, C.; Lara, B.; Cruz, M.-J.; Muñoz, X. Protein Identification of Two Allergens of Boletus edulis Causing Occupational Asthma. Am. J. Respir. Crit. Care Med. 2013, 187, 1146–1148. [Google Scholar] [CrossRef]
- Foti, C.; Nettis, E.; Damiani, E.; Bellino, M.; Cassano, N.; Ferrannini, A.; Vena, G.A. Occupational Respiratory Allergy Due to Boletus Edulis Powder. Ann. Allergy Asthma Immunol. 2008, 101, 552–553. [Google Scholar] [CrossRef]
- Rivera-Mariani, F.E.; Vysyaraju, K.; Negherbon, J.; Levetin, E.; Horner, W.E.; Hartung, T.; Breysse, P.N. Comparison of the Interleukin-1β-Inducing Potency of Allergenic Spores from Higher Fungi (Basidiomycetes) in a Cryopreserved Human Whole Blood System. Int. Arch. Allergy Immunol. 2013, 163, 154–162. [Google Scholar] [CrossRef]
- Lehrer, S.B.; Lopez, M.; Butcher, B.T.; Olson, J.; Reed, M.; Salvaggio, J.E. Basidiomycete mycelia and spore-allergen extracts: Skin test reactivity in adults with symptoms of respiratory allergy. J. Allergy Clin. Immunol. 1986, 78, 478–485. [Google Scholar] [CrossRef]
- Helbling, A.; Gayer, F.; Pichler, W.J.; Brander, K.A. Mushroom (Basidiomycete) Allergy: Diagnosis Established by Skin Test and Nasal Challenge. J. Allergy Clin. Immunol. 1998, 102, 853–858. [Google Scholar] [CrossRef]
- Crameri, R.; Garbani, M.; Rhyner, C.; Huitema, C. Fungi: The Neglected Allergenic Sources. Allergy 2013, 69, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, N.; Sridhara, S.; Singh, B.P.; Arora, N. Effect of proteolytic activity of Epicoccum purpurascens major allergen, Epi p 1 in allergic inflammation. Clin. Exp. Immunol. 2008, 154, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Twaroch, T.E.; Curin, M.; Valenta, R.; Swoboda, I. Mold Allergens in Respiratory Allergy: From Structure to Therapy. Allergy Asthma Immunol. Res. 2015, 7, 205. [Google Scholar] [CrossRef] [PubMed]
- Golan, J.J.; Pringle, A. Long-Distance Dispersal of Fungi. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Oliver, H.R. Wind profiles in and above a forest canopy. Q. J. R. Meteorol. Soc. 1971, 97, 548–553. [Google Scholar] [CrossRef]
- Jackson, T.D.; Sethi, S.; Dellwik, E.; Angelou, N.; Bunce, A.; van Emmerik, T.; Duperat, M.; Ruel, J.-C.; Wellpott, A.; Van Bloem, S.; et al. The motion of trees in the wind: A data synthesis. Biogeosciences 2021, 18, 4059–4072. [Google Scholar] [CrossRef]
- Freundorfer, A.; Rehberg, I.; Law, B.E.; Thomas, C. Forest Wind Regimes and Their Implications on Cross-Canopy Coupling. Agric. For. Meteorol. 2019, 279, 107696. [Google Scholar] [CrossRef]
- Puchalski, T.; Prusinkiewicz, Z. Ekologiczne Podstawy Siedliskoznawstwa Leśnego; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 1975. [Google Scholar]
- Dressaire, E.; Yamada, L.; Song, B.; Roper, M. Mushrooms Use Convectively Created Airflows to Disperse Their Spores. Proc. Natl. Acad. Sci. USA 2016, 113, 2833–2838. [Google Scholar] [CrossRef]
Station | Tmean (°C) | Humidity (%) | Pressure (hPa) | Dew Point (°C) | Wind Speed (m/s) |
---|---|---|---|---|---|
ST 1 | 14.7 | 72.1 | 980.2 | 9.5 | 0.5 |
ST 2 | 14.1 | 72.5 | 981.7 | 8.7 | 0.9 |
ST 3 | 13.8 | 74.3 | 982.4 | 8.9 | 0.6 |
ST 4 | 14.0 | 70.4 | 993.7 | 8.3 | 0.6 |
Short-Term Monitoring—Burkard Portable Sampler | ||||||
---|---|---|---|---|---|---|
station | total sum of spores | max concentration (spores in m3 of the air) | day of max concentration | |||
ST 1 | 31,050 | 9550 | 13 October | |||
ST 2 | 28,790 | 16,160 | 11 October | |||
ST 3 | 7470 | 2160 | 11 October | |||
ST 4 | 3770 | 820 | 11 October | |||
Continuous monitoring—Lanzoni trap | ||||||
length of season (days) | SSIn | start of season (day) | end of season (day) | f (%) | max concentration (spores in m3/24 h) | day of max concentration |
71 | 13,814 | 16 August | 25 October | 82.4 | 1168 | 17 October |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Kanach, M.; Kasprzyk, I. Dispersion of Boletus-Type Spores Within and Beyond Beech Forest. Forests 2024, 15, 2232. https://doi.org/10.3390/f15122232
Wójcik-Kanach M, Kasprzyk I. Dispersion of Boletus-Type Spores Within and Beyond Beech Forest. Forests. 2024; 15(12):2232. https://doi.org/10.3390/f15122232
Chicago/Turabian StyleWójcik-Kanach, Magdalena, and Idalia Kasprzyk. 2024. "Dispersion of Boletus-Type Spores Within and Beyond Beech Forest" Forests 15, no. 12: 2232. https://doi.org/10.3390/f15122232
APA StyleWójcik-Kanach, M., & Kasprzyk, I. (2024). Dispersion of Boletus-Type Spores Within and Beyond Beech Forest. Forests, 15(12), 2232. https://doi.org/10.3390/f15122232