Tree Species and Stand Density: The Effects on Soil Organic Matter Contents, Decomposability and Susceptibility to Microbial Priming
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Sites and Experimental Setup
2.2. Soil Sample Preparation and Analysis
2.3. Determining the Priming of Soil Organic Matter and C Decomposability
2.4. Priming Calculation
2.5. Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118–127. [Google Scholar] [CrossRef]
- Laganiere, J.; Angers, D.A.; Pare, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Sun, X.; Sun, H.; Wang, W.; Razaq, M. Effects of stand density on soil organic carbon storage in the top and deep soil layers of Fraxinus mandshurica plantations. Austrian J. For. Sci. 2019, 136, 27–44. [Google Scholar]
- Farooq, T.; Ma, X.; Rashid, M.; Wu, W.; Xu, J.; Tarin, M.; He, Z.; Wu, P. Impact of stand density on soil quality in Chinese fir (Cunninghamia lanceolate) monoculture. Appl. Ecol. Environ. Res. 2019, 17, 3553–3566. [Google Scholar] [CrossRef]
- Truax, B.; Fortier, J.; Gagnon, D.; Lambert, F. Planting density and site effects on stem dimensions, stand productivity, biomass partitioning, carbon stocks and soil nutrient supply in hybrid poplar plantations. Forests 2018, 9, 293. [Google Scholar] [CrossRef]
- Hernández, J.; del Pino, A.; Vance, E.D.; Califra, Á.; Del Giorgio, F.; Martínez, L.; González-Barrios, P. Eucalyptus and Pinus stand density effects on soil carbon sequestration. For. Ecol. Manag. 2016, 368, 28–38. [Google Scholar] [CrossRef]
- González, I.G.; Corbí, J.G.; Cancio, A.F.; Ballesta, R.J.; Cascón, M.G. Soil carbon stocks and soil solution chemistry in Quercus ilex stands in Mainland Spain. Eur. J. For. Res. 2012, 131, 1653–1667. [Google Scholar] [CrossRef]
- Noh, N.J.; Kim, C.; Bae, S.W.; Lee, W.K.; Yoon, T.K.; Muraoka, H.; Son, Y. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities. J. Plant Ecol. 2013, 6, 368–379. [Google Scholar] [CrossRef]
- Cécillon, L.; Soucémarianadin, L.N.; Berthelot, A.; Duverger, M.; De Boisseson, J.M.; Gosselin, F.; Guenet, B.; Barthès, B.; De Danieli, S.; Barrier, R.; et al. piCaSo: Pilotage sylvicole et contrôle pédologique des stocks de carbone des sols forestiers. Rep. ADEME 2017, 103. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-85082819757&origin=inward&txGid=f5b2dbd15c3d3d529b5291c5fe536486 (accessed on 30 January 2022).
- Vesterdal, L.; Dalsgaard, M.; Felby, C.; Raulund-Rasmussen, K.; Jørgensen, B.B. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. For. Ecol. Manag. 1995, 77, 1–10. [Google Scholar] [CrossRef]
- Skovsgaard, J.P.; Stupak, I.; Vesterdal, L. Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies (L.) Karst.): A case study on spacing and thinning effects in northern Denmark. Scand. J. For. Res. 2006, 21, 470–488. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Hoover, C.M. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US. Carbon Balance Manag. 2011, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.; Kolka, R.; Palik, B.; McDonald, R.; Jurgensen, M. Long-term management impacts on carbon storage in Lake States forests. For. Ecol. Manag. 2011, 262, 424–431. [Google Scholar] [CrossRef]
- Jurgensen, M.; Tarpey, R.; Pickens, J.; Kolka, R.; Palik, B. Long-term Effect of Silvicultural Thinnings on Soil Carbon and Nitrogen Pools. Soil Sci. Soc. Am. J. 2012, 76, 1418–1425. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, M.; Wu, T. Effect of forest structural change on carbon storage in a coastal Metasequoia glyptostroboides stand. Sci. World J. 2013, 2013, 830509. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Montero, G.; Río, M. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur. J. For. Res. 2013, 132, 253–262. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Oeding, J. A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences 2013, 10, 3691–3703. [Google Scholar] [CrossRef]
- Achat, D.L.; Fortin, M.; Landmann, G.; Ringeval, B.; Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 2015, 5, 15991. [Google Scholar] [CrossRef]
- Noormets, A.; Epron, D.; Domec, J.C.; McNulty, S.G.; Fox, T.; Sun, G.; King, J.S. Effects of forest management on productivity and carbon sequestration: A review and hypothesis. For. Ecol. Manag. 2015, 355, 124–140. [Google Scholar] [CrossRef]
- Strukelj, M.; Brais, S.; Paré, D. Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands. Eur. J. For. Res. 2015, 134, 737–754. [Google Scholar] [CrossRef]
- Kim, S.; Han, S.H.; Li, G.; Yoon, T.K.; Lee, S.-T.; Kim, C.; Son, Y. Effects of thinning intensity on nutrient concentration and enzyme activity in Larix kaempferi forest soils. J. Ecol. Environ. 2016, 40, 2. [Google Scholar] [CrossRef][Green Version]
- Mattson, K.G.; Smith, H.C. Detrital organic matter and soil CO2 efflux in forests regenerating from cutting in West Virginia. Soil Biol. Biochem. 1993, 25, 1241–1248. [Google Scholar] [CrossRef]
- Chiti, T.; Perugini, L.; Vespertino, D.; Valentini, R. Effect of selective logging on soil organic carbon dynamics in tropical forests in central and western Africa. Plant Soil 2015, 399, 283–294. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Díaz-Pinés, E.; Barbeito, I.; Sánchez-González, M.; Montes, F.; Rubio, A.; Cañellas, I. Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean mountain Scots pine forests. For. Ecol. Manag. 2015, 348, 186–195. [Google Scholar] [CrossRef]
- Mushinski, R.M.; Gentry, T.J.; Boutton, T.W. Forest organic matter removal leads to long-term reductions in bacterial and fungal abundance. Appl. Soil Ecol. 2019, 137, 106–110. [Google Scholar] [CrossRef]
- Gross, C.D.; James, J.N.; Turnblom, E.C.; Harrison, R.B. Thinning Treatments Reduce Deep Soil Carbon and Nitrogen Stocks in a Coastal Pacific Northwest Forest. Forests 2018, 9, 238. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, D.; Li, W.; Sun, D.; Jin, C.; Yuan, F.; Wang, A.; Wu, J. The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis. For. Ecol. Manag. 2018, 429, 36–43. [Google Scholar] [CrossRef]
- Cepáková, Š.; Tošner, Z.; Frouz, J. The effect of tree species on seasonal fluctuations in water-soluble and hot water-extractable organic matter at post-mining sites. Geoderma 2016, 275, 19–27. [Google Scholar] [CrossRef]
- Mueller, K.E.; Hobbie, S.; Chorover, J.; Reich, P.; Eisenhauer, N.; Castellano, M.; Chadwick, O.A.; Dobies, T.; Hale, C.M.; Jagodzinski, A.; et al. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 2015, 123, 313–327. [Google Scholar] [CrossRef]
- Menyailo, O.V.; Hungate, B.A.; Zech, W. Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment. Plant Soil 2002, 242, 171–182. [Google Scholar] [CrossRef]
- Menyailo, O.V.; Hungate, B.A.; Zech, W. The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment. Plant Soil 2002, 242, 183–196. [Google Scholar] [CrossRef]
- Marschner, B.; Brodowski, S.; Dreves, A.; Gleixner, G.; Gude, A.; Grootes, P.M.; Hamer, U.; Heim, A.; Jandl, G.; Ji, R.; et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 2008, 171, 91–110. [Google Scholar] [CrossRef]
- Vesterdal, L.; Elberling, B.; Christiansen, J.R.; Callesen, I.; Schmidt, I.K. Soil respiration and rates of soil carbon turnover differ among six common European tree species. For. Ecol. Manag. 2012, 264, 185–196. [Google Scholar] [CrossRef]
- Plante, A.F.; Conant, R.T.; Carlson, J.; Greenwood, R.; Shulman, J.M.; Haddix, M.L.; Paul, E.A. Decomposition temperature sensitivity of isolated soil organic matter fractions. Soil Biol. Biochem. 2010, 42, 1991–1996. [Google Scholar] [CrossRef]
- Paterson, E.; Thornton, B.; Midwood, A.J.; Osborne, S.M.; Sim, A.; Millard, P. Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter. Soil Biol. Biochem. 2008, 40, 2434–2440. [Google Scholar] [CrossRef]
- Taneva, L.; Gonzalez-Meler, M.A. Decomposition kinetics of soil C of different age from a forest exposed to 8 years of elevated atmospheric CO2 concentration. Soil. Biol. Biochem. 2008, 40, 2670–2677. [Google Scholar] [CrossRef]
- Wutzler, T.; Reichstein, M. Colimitation of decomposition by substrates and decomposers—A comparison of model formulations. Biogeosciences 2008, 5, 749–759. [Google Scholar] [CrossRef]
- Chapin, F.S.; McFarland, J.; McGuire, A.D.; Euskirchen, E.S.; Ruess, R.W.; Kielland, K. The changing global C cycle: Linking plant-soil C dynamics to global consequences. J. Ecol. 2009, 97, 840–850. [Google Scholar]
- Sobachkin, R.S.; Sobachkin, D.S.; Buzykin, A.I. The influence of stand density on growth of tree conifer species. In Trees and Soil Interactions: Implications to Global Change; Binkley, D., Menyailo, O.V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; pp. 247–255. [Google Scholar]
- Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54, 187–211. [Google Scholar] [CrossRef]
- Hamer, U.; Marschner, B. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol. Biochem. 2005, 37, 445–454. [Google Scholar] [CrossRef]
- Liu, X.-J.A.; Sun, J.; Mau, R.L.; Finley, B.K.; Compson, Z.G.; van Gestel, N.; Brown, J.R.; Schwartz, E.; Dijkstra, P.; Hungate, B.A. Labile carbon input determines the direction and magnitude of the priming effect. Appl. Soil Ecol. 2017, 109, 7–13. [Google Scholar] [CrossRef]
- Qiao, N.; Schaefer, D.; Blagodatskaya, E.; Zou, X.; Xu, X.; Kuzyakov, Y. Labile carbon retention compensates for CO2 released by priming in forest soils. Glob. Chang. Biol. 2014, 20, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, W.; Hu, G.; Dai, W.; Jiang, P.; Bai, E. The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest. Oecologia 2015, 178, 1239–1250. [Google Scholar] [CrossRef]
- StatSoft. Statistica for Windows (Computer Program Manual); StatSoft: Tulsa, OK, USA, 1997. [Google Scholar]
- Menyailo, O.V.; Abraham, W.R.; Conrad, R. Tree species affect atmospheric CH4 oxidation without altering community composition of soil methanotrophs. Soil Biol. Biochem. 2010, 42, 101–107. [Google Scholar] [CrossRef]
- Menyailo, O.V.; Hungate, B.A. Interactive effects of tree species and soil moisture on methane consumption. Soil Biol. Biochem 2003, 35, 625–628. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Eissenstat, D.M.; Trumbore, S.; Freeman, K.H.; Hobbie, S.E.; Chorover, J.; Oleksyn, J.; Reich, P.B.; Mueller, C.W. Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Glob. Chang. Biol 2019, 25, 1529–1546. [Google Scholar] [CrossRef]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Litton, C.M.; Ryan, M.G.; Knight, D.H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol. Appl. 2004, 14, 460–475. [Google Scholar] [CrossRef]
- Berger, T.W.; Neubauer, C.; Glatzel, G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For. Ecol. Manag. 2002, 159, 3–14. [Google Scholar] [CrossRef]
- Hagen-Thorn, A.; Callesen, I.; Armolaitis, K.; Nihlgård, B. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manag. 2004, 195, 373–384. [Google Scholar] [CrossRef]
- Hansson, K.; Olsson, B.A.; Olsson, M.; Johansson, U.; Berggren Kleja, D. Differences in soil properties in adjacent stands. For. Ecol. Manag. 2011, 262, 522–530. [Google Scholar] [CrossRef]
- Pastor, J.; Post, W.M. Response of northern forests to CO2-induced climate change. Nature 1988, 334, 55–58. [Google Scholar] [CrossRef]
- Fekete, I.; Lajtha, K.; Kotroczó, Z.; Várbíró, G.; Varga, C.; Tóth, J.A.; Demeter, I.; Veperdi, G.; Berki, I. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Glob. Chang. Biol. 2017, 23, 3154–3168. [Google Scholar] [CrossRef]
- Krankina, O.N.; Dixon, R.K.; Kirilenko, A.P.; Kobak, K.I. Global Climate Change Adaptation: Examples from Russian Boreal Forests. Clim. Chang. 1997, 36, 197–215. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Dvinskaya, M.L.; Ranson, K.J.; Im, S.T. Expansion of Evergreen Conifers to the Larch-Dominated Zone and Climatic Trends. Russ. J. Ecol. 2005, 36, 164–170. [Google Scholar] [CrossRef]
Our Numbering | Initial Density at Planting (Trees/ha) | Current Density (Trees/ha) | ||
---|---|---|---|---|
Spruce | Larch | Scots Pine | ||
1 | 500 | 470 | 426 | 457 |
2 | 2500 | 1118 | 1342 | 1124 |
3 | 8000 | 2793 | 2838 | 2523 |
4 | 40,000 | 9495 | 7667 | 8236 |
5 | 125,000 | 18,170 | 18,000 | 17,795 |
Soil Chemical Properties | Two-Way ANOVA | One-Way ANOVA, Density Effect Within Different Tree Species | ||||
---|---|---|---|---|---|---|
Tree Species | Density | Tree Species × Density Interactions | Spruce | Larch | Scots Pine | |
Soil C contents | <0.001 | <0.001 | <0.001 | <0.001 | 0.109 | 0.019 |
Soil N contents | <0.001 | <0.001 | <0.001 | <0.001 | 0.016 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menyailo, O.V.; Sobachkin, R.S.; Makarov, M.I.; Cheng, C.-H. Tree Species and Stand Density: The Effects on Soil Organic Matter Contents, Decomposability and Susceptibility to Microbial Priming. Forests 2022, 13, 284. https://doi.org/10.3390/f13020284
Menyailo OV, Sobachkin RS, Makarov MI, Cheng C-H. Tree Species and Stand Density: The Effects on Soil Organic Matter Contents, Decomposability and Susceptibility to Microbial Priming. Forests. 2022; 13(2):284. https://doi.org/10.3390/f13020284
Chicago/Turabian StyleMenyailo, Oleg V., Roman S. Sobachkin, Mikhail I. Makarov, and Chih-Hsin Cheng. 2022. "Tree Species and Stand Density: The Effects on Soil Organic Matter Contents, Decomposability and Susceptibility to Microbial Priming" Forests 13, no. 2: 284. https://doi.org/10.3390/f13020284
APA StyleMenyailo, O. V., Sobachkin, R. S., Makarov, M. I., & Cheng, C.-H. (2022). Tree Species and Stand Density: The Effects on Soil Organic Matter Contents, Decomposability and Susceptibility to Microbial Priming. Forests, 13(2), 284. https://doi.org/10.3390/f13020284