Abstract
The digital transformation in the treatment of mental health and emotional disharmony requires artificial intelligence architectures that overcome the limitations of purely neural approaches, such as temporal inconsistency, opacity, and lack of theoretical foundations. Assuming the existence and use of generalist LLMs currently used in clinical settings and considering the appropriate limitations indicated by experts, this article aims to offer clinicians an alternative Neuro-symbolic-Psychological multi-agent architecture (NSPA-AI), which integrates archetypal symbolic reasoning with neurobiological modelling, based on our established framework of artificial neurotransmitters for the modelling and analysis of affective-emotional stimuli to enable interpretable AI-assisted psychological intervention. The system implements a hub-and-spoke topology that coordinates five specialized agents (symbolic, psychological, neurofunctional, decision fusion, learning) that process heterogeneous information via SPADE protocols. Seven archetypal constructs from Jungian psychology and narrative identity theory provide stable symbolic frameworks for longitudinal therapeutic consistency. An empirical study of 156 university students demonstrated significant improvements in depression (Cohen’s d = 1.03), stress (d = 0.89), and narrative identity integration (d = 0.75), which were maintained at a 12-week follow-up and superior to GPT-4 controls (d = 0.34). Neurofunctional correlations—downregulation of cortisol (r = 0.71 with stress reduction), increase in serotonin (r = −0.68 with depression improvement)—validated the neurobiological basis of the entropy-energy framework. Qualitative analysis revealed the following four mechanisms of improvement: symbolic emotional support (93%), increased self-awareness through neurotransmitter visualization (84%), non-judgmental AI interaction (98%), and archetypal narrative organization (87%). The results establish that neuro-symbolic architectures are viable alternatives to large language models for digital mental health, providing the interpretability and clinical validity essential for adoption in the healthcare sector.