Influence of Hot Plastic Deformation in ? and (? + ?) Area on the Structure and Mechanical Properties of High-Strength Low-Alloy (HSLA) Steel
Abstract
:1. Introduction
- (i).
- when the austenitic grain size is refined by repeating cycles which comprise deformation + recrystallization followed by phase transformation to ferrite (dγ ≈ 20–30 μm and dα ≈ 10–20 μm)
- (ii).
- with deformation that continues to the region of the retarded recrystallization of austenite when austenite grains become elongated, followed by phase transformation to fine ferrite (Sv(gb + db) ≈ 50–500 mm−1, dγ,cor ≈ 20–30 μm, and dα ≈ 10–20 μm)
- (iii).
- with deformation that continues to the region of the retarded recrystallization of austenite and the dual-phase region (γ + α), when austenite grains become elongated, and ferrite grains and subgrains form during deformation, followed by a phase transformation to very fine ferrite (Sv(gb + db) ≈ 700 mm−1, dγ,cor ≈ 4 μm, and dα ≈ 1 μm)
2. Experimental Procedure
3. Results and Discussion
3.1. Effect of Finish Rolling Temperature on the Final Microstructure
3.2. Effect of Finish Rolling Temperature on Mechanical Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kneissl, A.C.; Garcia, C.I.; DeArdo, A.J. HSLA steels: Processing, properties and applications. Miner. Met. Mater. Soc. 1992, 99–105. [Google Scholar]
- Rodrigues, P.C.M.; Pereloma, E.V.; Santos, D.B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Mater. Sci. Eng. A 2000, 283, 136–143. [Google Scholar] [CrossRef]
- Show, B.K.; Veerababu, R.; Balamuralikrishnan, R.; Malakondaiah, G. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel. Mater. Sci. Eng. A 2010, 527, 1595–1604. [Google Scholar] [CrossRef]
- Kong, J.; Xie, C. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel. Mater. Des. 2006, 27, 1169–1173. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.S.; Ghosh, S.K.; Kundu, S.; Chatterjee, S. Phase transformation and mechanical behaviour of thermomechanically controlled processed high strength ordnance steel. Mater. Chem. Phys. 2013, 138, 86–94. [Google Scholar] [CrossRef]
- Bakkaloglu, A. Effect of processing parameters on the microstructure and properties of an Nb Microalloyed steel. Mater. Lett. 2002, 56, 263–272. [Google Scholar] [CrossRef]
- Pereloma, E.V.; Boyd, J.D. Effects of simulated on line accelerated cooling processing on transformation temperatures and microstructure in Microalloyed steels Part 2-Plate processing. Mater. Sci. Technol. 1996, 12, 1043–1051. [Google Scholar] [CrossRef]
- Kvackaj, T.; Bidulska, J. From micro to nano scale structure by plastic deformations. Mater. Sci. For. 2014, 783, 842–847. [Google Scholar] [CrossRef]
- Kvackaj, T.; Mamuzic, I. A quantitative characterization of austenite microstructure after deformation in nonrecrystallization region and its influence on ferrite microstructure after transformation. ISIJ Int. 1998, 38, 1270–1276. [Google Scholar] [CrossRef]
- Beladi, H.; Kelly, G.L.; Shokouhi, A.; Hodgson, P.D. The evolution of ultrafine ferrite formation through dynamic strain-induced transformation. Mater. Sci. Eng. A 2004, 371, 343–352. [Google Scholar] [CrossRef]
- Hurley, P.J.; Hodgson, P.D. Formation of ultra-fine ferrite in hot rolled strip: Potential mechanisms for grain refinement. Mater. Sci. Eng. A 2001, 302, 206–214. [Google Scholar] [CrossRef]
- Ghosh, Ch.; Aranas, C., Jr.; Jonas, J. Dynamic transformation of deformed austenite at temperatures above the Ae3. Prog. Mater. Sci. 2016, 82, 151–233. [Google Scholar] [CrossRef]
- Dong, H.; Sun, X. Deformation induced ferrite transformation in low carbon steels. Curr. Opin. Solid State Mater. Sci. 2005, 9, 269–276. [Google Scholar] [CrossRef]
- Basabe, V.V.; Jonas, J.J.; Ghosh, C. Formation of Widmanstatten ferrite in a 0.036% Nb low carbon steel at temperatures above the Ae3. Steel Res. Int. 2014, 85, 8–15. [Google Scholar] [CrossRef]
- Sun, Y.; Han, Y.; Gao, P.; Li, Y. Growth kinetics of metallic iron phase in coal-based reduction of Oolitic iron ore. ISIJ Int. 2016, 56, 1697–1704. [Google Scholar] [CrossRef]
- Speich, G.R.; Cuddy, L.J.; Gordon, C.R.; DeArdo, A.J. Formation of ferrite from control-rolled austenite. In Proceedings of the Metallurgical Society of the Canadian Institute TMS-AIME, Warrendale, PA, USA, 1984; Marder, A.R., Goldstein, J.I., Eds.; pp. 341–389.
- Sinha, A.K. Physical metallurgy of Microalloyed high strength low alloy steels. In Proceedings of the Emerging Technologies for New Materials and Product-Mix of the Steel Industry, Cincinnati, OH, USA, 1991; p. 195.
- Ghosh, S.K.; Bandyopadhyay, P.S.; Kundu, S.; Chatterjee, S. Copper bearing microalloyed ultraligh strength steel on a pilot scale: Microstructure and properties. Mater. Sci. Eng. A 2011, 528, 7887–7894. [Google Scholar] [CrossRef]
- Speer, J.G.; Michael, J.R.; Hansen, S.S. Carbonitride precipitation in niobium/vanadium microalloyed steels. Metall. Mater. Trans. A 1987, 18, 211–222. [Google Scholar] [CrossRef]
- Pandit, A.; Murugaiyan, A.; Saha Podder, A.; Haldar, A.; Bhattacharjee, D.; Chandra, S.; Ray, R.K. Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels. Scr. Mater. 2005, 53, 1309–1314. [Google Scholar] [CrossRef]
C | Mn | Si | P | S | Cu | Ni | Cr | Ti | Nb | V | CE * |
---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 1.54 | 0.12 | 0.004 | 0.001 | 0.12 | 0.09 | 0.15 | ≤0.01 | 0.048 | 0.18 | 0.48 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sas, J.; Kvačkaj, T.; Milkovič, O.; Zemko, M. Influence of Hot Plastic Deformation in ? and (? + ?) Area on the Structure and Mechanical Properties of High-Strength Low-Alloy (HSLA) Steel. Materials 2016, 9, 971. https://doi.org/10.3390/ma9120971
Sas J, Kvačkaj T, Milkovič O, Zemko M. Influence of Hot Plastic Deformation in ? and (? + ?) Area on the Structure and Mechanical Properties of High-Strength Low-Alloy (HSLA) Steel. Materials. 2016; 9(12):971. https://doi.org/10.3390/ma9120971
Chicago/Turabian StyleSas, Jan, Tibor Kvačkaj, Ondrej Milkovič, and Michal Zemko. 2016. "Influence of Hot Plastic Deformation in ? and (? + ?) Area on the Structure and Mechanical Properties of High-Strength Low-Alloy (HSLA) Steel" Materials 9, no. 12: 971. https://doi.org/10.3390/ma9120971
APA StyleSas, J., Kvačkaj, T., Milkovič, O., & Zemko, M. (2016). Influence of Hot Plastic Deformation in ? and (? + ?) Area on the Structure and Mechanical Properties of High-Strength Low-Alloy (HSLA) Steel. Materials, 9(12), 971. https://doi.org/10.3390/ma9120971