Synergistic Effect of Cu Addition and Pre-Straining on the Natural Aging and Artificial Age-Hardening Behavior of AA6111 Alloy
Abstract
:1. Introduction
2. Experimental
3. Results
3.1. Artificial Age-Hardening Behavior
3.2. Natural Aging and Bake Hardening Response
3.3. Tensile Response
3.4. Microstructural Characterization
4. Discussion
5. Conclusions
- (1)
- Increasing Cu content (0–0.7 wt.%) in AA6111 alloys enhances age-hardening capacity and accelerates artificial aging kinetics. The 0.7Cu alloy exhibited a 14% higher peak hardness (106.9 HV) and 50% shorter peak aging time (5 h vs. 10 h for the Cu-free alloy), attributed to the accelerated precipitation of GP zones, β″, and Q′ phases.
- (2)
- Introducing 2% pre-straining significantly shortened peak aging times (e.g., 2 h for 0.7Cu alloy) and suppressed natural aging (NA) effects by aggregating quenched vacancies and inhibiting NA cluster formation. The pre-strained 0.7Cu alloy achieved a 68.1 MPa yield strength increment after paint baking, outperforming non-pre-strained alloys.
- (3)
- TEM analysis revealed that Cu promotes fine, dense precipitates (GP zones/β″), while pre-straining introduces dislocations that enhance Q′ phase nucleation. Dislocation strain fields facilitated elongated, disordered precipitates along defect sites, improving the BHR and NA resistance.
- (4)
- The synergy of 0.7Cu and pre-straining optimizes AA6111 alloys for automotive applications, balancing a high bake-hardening response (111.7 HV peak hardness) with suppressed NA instability. This combination addresses the trade-off between formability (pre-strain tolerance) and post-forming strength, offering a viable strategy for lightweight component manufacturing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, W.Y.; Xie, M.J.; Zhang, J.S. Giant bake hardening response of multi-scale precipitation strengthened Al-Mg-Si-Cu-Zn alloy via pre-aging treatments. Mater. Charact. 2021, 181, 111464. [Google Scholar]
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Hong, Y.Y.; Jun, F.; Shi, L.S.; Feng, Q.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar]
- Li, T.; Song, J.; Zhang, A.; You, G.Q.; Yang, Y.; Jiang, B.; Qin, X.Y.; Xu, C.; Pan, F.S. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components. J. Magnes. Alloy 2023, 11, 4166–4180. [Google Scholar]
- Ponka, B. Structure and Mechanical Properties of AlMgSi(Cu) Extrudates Straightened with Dynamic Deformation. Materials 2024, 17, 3983. [Google Scholar] [CrossRef]
- Macwan, A.; Kumar, A.; Chen, D.L. Ultrasonic spot welded 6111-T4 aluminum alloy to galvanized high-strength low-alloy steel: Microstructure and mechanical properties. Mater. Des. 2017, 113, 284–296. [Google Scholar]
- Ding, L.P.; Jia, Z.; Nie, J.; Weng, Y.; Cao, L.; Chen, H.; Wu, X.Z.; Liu, Q. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Mater. 2018, 145, 437–450. [Google Scholar]
- Torsæter, M.; Lefebvre, W.; Marioara, C.D.; Andersen, S.J.; Walmsley, J.C.; Holmestad, R. Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scr. Mater. 2011, 64, 817–820. [Google Scholar]
- Weng, Y.Y.; Jia, Z.H.; Ding, L.P.; Du, K.; Duan, H.C.; Liu, Q.; Wu, X.H. Special segregation of Cu on the habit plane of lath-like β′ and QP2 precipitates in Al-Mg-Si-Cu alloys. Scr. Mater. 2018, 151, 33–37. [Google Scholar]
- Weng, Y.Y.; Li, R.M.; Zheng, L.X.; Zhao, R.X.; Zhou, Y.X.; Chen, J.H.; Ding, L.P. Effects of pre-deformation on microstructure evolution and hemming performance for Al-Mg-Si-Cu alloys. J. Mater. Res. Technol. 2025, 35, 2840–2851. [Google Scholar]
- Cui, M.; Jo, Y.H.; Kim, Y.; Kim., H.; Lee., J. The effect of different preaging conditions on mechanical properties and clustering behavior of AA6016 sheets for automotive outer panels. J. Mater. Res. Technol. 2022, 20, 238–245. [Google Scholar]
- Zhu, S.; Shih, H.C.; Cui, X.Y.; Yu, C.Y.; Ringer, S.P. Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy. Acta Mater. 2021, 203, 116455. [Google Scholar]
- Chen, K.L.; Liu, C.H.; Ma, P.P.; Yang, J.S.; Zhan, L.H.; Huang, M.H.; Hu, J.H. Enhancing creep formability and comprehensive property in Al–Mg–Si alloy by combinatorial pre-ageing and large pre-deformation. Mater. Sci. Eng. A 2021, 826, 141967. [Google Scholar]
- Chen, X.Y.; Guo, M.X.; Qiao, D.X.; Liu, L.K.; Yu, K.C.; Zhuang, L.Z. Simultaneously enhanced strength, ductility and formability of Al-Mg-Si-Cu-Zn-Fe-Mn alloy sheets by coupling distribution of solute, phases and grains. Mater. Charact. 2024, 209, 113720. [Google Scholar]
- Lu, G.; Nie, S.; Wang, J.J.; Zhang, Y.; Wu, T.H.; Liu, Y.J.; Liu, C.M. Enhancing the bake-hardening responses of a pre-aged Al-Mg-Si alloy by trace Sn additions. J. Mater. Sci. Technol. 2020, 40, 107–112. [Google Scholar]
- Zhang, M.X.; Wang, C.; Zhang, S.Y.; Liu, X.; Wang, X.; Ren, M.W.; Wang, H.Y. Enhanced aging precipitation behavior and mechanical properties of 6022 Al–Mg–Si alloy with Zr addition. Mater. Sci. Eng. A 2022, 840, 142957. [Google Scholar]
- Li, G.J.; Guo, M.X.; Du, J.Q.; Zhuang, L.Z. Synergistic improvement in bake-hardening response and natural aging stability of Al-Mg-Si-Cu-Zn alloys via non-isothermal pre-aging treatment. Mater. Des. 2022, 218, 110714. [Google Scholar]
- Xiao, Q.; Liu, H.Q.; Yi, D.Y.; Yin, D.Y.; Chen, Y.Q.; Zhang, Y.; Wang, B. Effect of Cu content on precipitation and age-hardening behavior in Al-Mg-Si-xCu alloys. J. Alloys Compd. 2017, 695, 1005–1013. [Google Scholar]
- Zandbergen, M.W.; Cerezo, A.; Smith, G.D.W. Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II. Influence of Cu additions. Acta Mater. 2015, 101, 149–158. [Google Scholar]
- Thronsen, E.; Marioara, C.D.; Sunde, J.K.; Minakuchi, K.; Katsumi, K.; Erga, I.; Andersen, S.J.; Friis, J.; Marthinsen, K.; Matsuda, K.; et al. The effect of heavy deformation on the precipitation in an Al-1.3Cu-1.0Mg-0.4Si wt.% alloy. Mater. Des. 2020, 186, 108203. [Google Scholar]
- Thronsen, E.; Mrkeseth, H.; Marioara, C.D.; Minakuchi, K.; Katsumi, T.; Marthinsen, K.; Matsuda, K.; Holmestad, R. The Effect of Small Additions of Fe and Heavy Deformation on the Precipitation in an Al–1.1Mg–0.5Cu–0.3Si At. Pct Alloy. Metall. Mater. Trans. A 2022, 53, 3296–3310. [Google Scholar]
- Sunde, J.K.; Wenner, S.; Holmestad, R. In situ heating TEM observations of evolving nanoscale Al–Mg–Si–Cu precipitates. J. Microsc. 2019, 279, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.Y.; Jia, Z.H.; Ding, L.P.; Liao, J.; Zhang, P.P.; Xu, Y.Q.; Liu, Q. Effect of pre-straining on structure and formation mechanism of precipitates in Al–Mg–Si–Cu alloy. Trans. Nonferrous Met. Soc. China 2022, 32, 436–447. [Google Scholar]
- Ding, L.P.; Jia, Z.H.; Liu, Y.U.; Weng, Y.Y.; Liu, Q. The influence of Cu addition and pre-straining on the natural aging and bake hardening response of Al-Mg-Si alloys. J. Alloys Compd. 2016, 688, 362–367. [Google Scholar]
- Saito, T.; Muraishi, S.; Marioara, C.D.; Andersen, S.J.; Røyset, J.; Holmestad, R. The Effects of Low Cu Additions and Predeformation on the Precipitation in a 6060 Al-Mg-Si Alloy. Metall. Mater. Trans. A 2013, 44, 4124–4135. [Google Scholar]
- ASTM E8; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2013.
- Marioara, C.D.; Andersen, S.J.; Hell, C.; Frafjord, J.; Friis, J.; Bjørge, R.; Ringdalen, I.G.; Engler, O.; Holmestad, R. Atomic structure of clusters and GP-zones in an Al-Mg-Si alloy. Acta Mater. 2024, 269, 119811. [Google Scholar]
- Martinsen, F.A.; Ehlers, F.J.H.; Torsæter, M.; Holmestad, R. Reversal of the negative natural aging effect in Al–Mg–Si alloys. Acta Mater. 2012, 60, 6091–6101. [Google Scholar]
- Werinos, M.; Antrekowitsch, H.; Ebner, T.; Prillhofer, R.; Curtin, W.A.; Uggowitzer, P.J.; Pogatscher, S. Design strategy for controlled natural aging in Al–Mg–Si alloys. Acta Mater. 2016, 118, 296–305. [Google Scholar]
- Li, Y.F.; Wu, Z.B.; Wang, D.T.; Nagaumi, H.; Zhang, G.Y.; Feng, Z.X.; Luo, X.H.; Luo, Y.Z.; Zhang, H.T.; Zhamg, B. Synergistic enhancement of strength and bendability of Al-Mg-Si-Cu alloys for safety components by adding Mn. Mater. Des. 2025, 249, 113531. [Google Scholar]
- Saito, T.; Mrtsell, E.A.; Wenner, S.; Marioara, C.D.; Andersen, S.J.; Friis, J.; Matsuda, K.; Holmestad, R. Atomic structures of precipitates in Al–Mg–Si alloys with small additions of other elements. Adv. Eng. Mater. 2018, 20, 1800128. [Google Scholar]
- Cao, L.F.; Rometsch, P.A.; Couper, M.J. Clustering behaviour in an Al–Mg–Si–Cu alloy during natural ageing and subsequent under-ageing. Mater. Sci. Eng. A 2013, 559, 257–261. [Google Scholar]
- Mantina, M.; Wang, Y.; Chen, L.Q.; Liu, Z.K.; Wolverton, C. First principles impurity diffusion coefficients. Acta Mater. 2009, 57, 4102–4108. [Google Scholar] [CrossRef]
- Tu, W.B.; Tang, J.G.; Zhang, Y.; Ye, L.Y.; Liu, S.D.; Lu, J.K.; Zhan, X.; Li, C.B. Effect of Sn and Cu addition on the precipitation and hardening behavior of Al-1.0Mg-0.6Si alloy. Mater. Sci. Eng. A 2020, 770, 138515. [Google Scholar] [CrossRef]
- Cui, M.; Lim, S.H.; Kim, H.; Lee, J. The effect of Cu additions and prestraining on the age-hardening behavior of AA6016 sheets. J. Alloys Compd. 2023, 960, 170801. [Google Scholar] [CrossRef]
- Serizawa, A.; Sato, T.; Miller, M.K. Effect of cold rolling on the formation and distribution of nanoclusters during pre-aging in an Al–Mg–Si alloy. Mater. Sci. Eng. A 2013, 561, 492–497. [Google Scholar] [CrossRef]
- Ninive, P.H.; Strandlie, A.; Gulbrandsen-Dahl, S.; Lefebvre, W.; Marioara, C.D.; Andersen, S.J.; Friis, J.; Holmestad, R.; Løvvik, O.M. Detailed atomistic insight into the β″ phase in Al–Mg–Si alloys. Acta Mater. 2014, 69, 126–134. [Google Scholar] [CrossRef]
Mg | Si | Cu | Mn | Fe | Al | |
---|---|---|---|---|---|---|
0Cu | 0.76 | 0.85 | 0.01 | 0.28 | 0.16 | Bal. |
0.2Cu | 0.72 | 0.86 | 0.21 | 0.28 | 0.15 | Bal. |
0.7Cu | 0.75 | 0.86 | 0.68 | 0.29 | 0.16 | Bal. |
Alloys | PSx | YS (MPa) | UTS (MPa) | El (%) | BHR (ΔYS, MPa) | |||
---|---|---|---|---|---|---|---|---|
Before PB | After PB | Before PB | After PB | Before PB | After PB | |||
0Cu | PS0 | 91.4 | 104.2 | 193.6 | 191.9 | 33.6 | 33.3 | 12.8 |
PS2 | 151.4 | 181.2 | 197.8 | 234.4 | 26.8 | 28.2 | 29.8 | |
0.2Cu | PS0 | 99.6 | 113.8 | 209.3 | 214.6 | 34.7 | 36.8 | 14.2 |
PS2 | 176.5 | 217.8 | 236.5 | 278.3 | 28.6 | 30.5 | 41.3 | |
0.7Cu | PS0 | 102.9 | 120.6 | 233.8 | 241.3 | 37.9 | 32.9 | 17.7 |
PS2 | 156.8 | 224.9 | 237.3 | 286.1 | 32.9 | 32.6 | 68.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Lu, Y.; Li, A.; Tang, M.; Chen, W.; Huang, C.; Du, J.; Xu, Y.; Yan, Y. Synergistic Effect of Cu Addition and Pre-Straining on the Natural Aging and Artificial Age-Hardening Behavior of AA6111 Alloy. Materials 2025, 18, 1635. https://doi.org/10.3390/ma18071635
Duan S, Lu Y, Li A, Tang M, Chen W, Huang C, Du J, Xu Y, Yan Y. Synergistic Effect of Cu Addition and Pre-Straining on the Natural Aging and Artificial Age-Hardening Behavior of AA6111 Alloy. Materials. 2025; 18(7):1635. https://doi.org/10.3390/ma18071635
Chicago/Turabian StyleDuan, Shougang, Yizhe Lu, Aiwen Li, Mingkan Tang, Weilun Chen, Chengyi Huang, Jun Du, Yanping Xu, and Yan Yan. 2025. "Synergistic Effect of Cu Addition and Pre-Straining on the Natural Aging and Artificial Age-Hardening Behavior of AA6111 Alloy" Materials 18, no. 7: 1635. https://doi.org/10.3390/ma18071635
APA StyleDuan, S., Lu, Y., Li, A., Tang, M., Chen, W., Huang, C., Du, J., Xu, Y., & Yan, Y. (2025). Synergistic Effect of Cu Addition and Pre-Straining on the Natural Aging and Artificial Age-Hardening Behavior of AA6111 Alloy. Materials, 18(7), 1635. https://doi.org/10.3390/ma18071635