Investigation on the Ageing Behaviour of High-Modulus Modified Bitumen Based on Rheological and Chemical Approaches
Abstract
:1. Introduction
2. Objectives
- Introduce an appropriate short-term ageing scheme for HMB.
- Analyze the ageing behaviour of HMB in terms of molecular size and rheological properties.
- Establish a correlation between the chemical and rheological properties of HMB after prolonged ageing.
3. Materials and Methods
3.1. Materials
3.2. Ageing Scheme
3.2.1. Ageing Scheme for Bitumen
3.2.2. Ageing Scheme for Bitumen Mixture
3.3. GPC Test
3.3.1. Sample Preparation Approach for GPC Test
3.3.2. GPC Chromatogram Quantification Method
3.4. Temperature Sweep (TS) Test
3.5. Multiple Stress Creep and Recovery (MSCR) Test
4. Results and Discussion
4.1. Appropriate Short-Term Ageing Scheme for HMB
4.1.1. Chemical Molecular Distribution of Bitumen and Bitumen in the Mixture
4.1.2. Rheological Properties of Bitumen and Recovered Bitumen in Bitumen Mixtures
4.2. Investigation on the Ageing Behaviour of HMB
4.2.1. GPC Test Results of Bitumen Following Long-Term Ageing
4.2.2. TS Test Results of Bitumen Following Long-Term Ageing
4.2.3. MSCR Test Results of Bitumen Following Long-Term Ageing
4.2.4. Investigation on the Ageing Resistance of HMB
4.3. Correlation Between Chemical Size Distribution and Rheological Properties of HMB
5. Conclusions
- Due to the inherently high viscosity of HMB, conventional TFOT ageing at lower temperatures does not produce significant ageing effects. This study establishes that raising the TFOT temperature to 193 °C results in an ageing level that closely aligns with that observed in HMB mixtures subjected to STOA tests, thus providing a more representative laboratory ageing protocol for HMB.
- The presence of mineral ash in PNB-based HMB prevents direct rheological testing of the recovered bitumen using standard extraction and recovery methods, highlighting a key limitation in conventional binder characterization techniques for HMB-containing mixtures.
- As ageing progresses, polymer degradation and oxidation reactions lead to a decrease in polymer content, phase angle (δ), and non-recoverable creep compliance (Jnr3.2) while increasing asphaltene content, complex modulus (G*), and percent recovery (R3.2). Notably, the impact of long-term ageing is more pronounced than that of short-term ageing, underscoring the need for enhanced ageing resistance strategies in HMB formulations.
- Compared with base bitumen and SBS-modified bitumen, HMB exhibits superior resistance to ageing and enhanced high-temperature performance, making it a promising material for durable asphalt pavement applications.
- Correlations between GPC results and the rheological properties of HMB are good. It is possible to obtain the G* and Jnr3.2 of bitumen in HMB mixtures by directly testing the chemical molecular weight distribution of the bitumen in HMB mixtures without time-consuming extraction and recovery processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sulyman, M.; Sienkiewicz, M.; Haponiuk, J. Asphalt pavement material improvement: A review. Int. J. Environ. Sci. Dev. 2014, 5, 444. [Google Scholar] [CrossRef]
- Li, M.; Han, Z.; Cheng, H.; Yang, R.; Yuan, J.; Jin, T. Low-temperature performance improvement strategies for high RAP content recycled asphalt mixtures: Focus on RAP gradation variability and mixing process. Fuel 2025, 387, 134362. [Google Scholar] [CrossRef]
- Han, Z.; Liu, Z.; Jiang, Y.; Wu, P.; Li, S.; Sun, G.; Zhang, L. Engineering properties and air void characteristics of cold recycled mixtures with different compaction methods. J. Build. Eng. 2023, 77, 107430. [Google Scholar] [CrossRef]
- Han, Z.; Jiang, D.; Liu, L.; Sun, L. Low-temperature performance improvement measures for emulsified asphalt cold recycled mixture: A comparative study. J. Mater. Civ. Eng. 2023, 35, 04023108. [Google Scholar] [CrossRef]
- Li, M.; Yuan, J.; Jin, T.; Wang, W.; Sun, Y.; Cheng, H. Investigation of performance evolution in recycled asphalt mixtures: The impact of virgin and RAP binder blending. Constr. Build. Mater. 2025, 469, 140519. [Google Scholar] [CrossRef]
- Khiavi, A.K.; Naseri, S. The effect of bitumen types on the performance of high-modulus asphalt mixtures. Pet. Sci. Technol. 2019, 37, 1223–1230. [Google Scholar] [CrossRef]
- Ranieri, M.; Celauro, C. Improvement of high modulus asphalt mixtures with average quality aggregate and bitumen by application of polymeric additives. Constr. Build. Mater. 2018, 178, 183–194. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Xu, S.; You, Z. High modulus asphalt concrete: A state-of-the-art review. Constr. Build. Mater. 2020, 237, 117653. [Google Scholar] [CrossRef]
- Izaks, R.; Rathore, M.; Haritonovs, V.; Zaumanis, M. Performance properties of high modulus asphalt concrete containing high reclaimed asphalt content and polymer modified binder. Int. J. Pavement Eng. 2022, 23, 2255–2264. [Google Scholar] [CrossRef]
- Ghassemirad, A.; Bala, N.; Hashemian, L.; Bayat, A. Application of asphaltenes in high modulus asphalt concrete. Constr. Build. Mater. 2021, 290, 123200. [Google Scholar] [CrossRef]
- Brosseaud, Y. Les enrobés à module elevé: Bilan de l’experience de française et transfert de technologie. In 7º Congrès National de la Route; Revue Générale des Routes et Des Aérodromes: Paris, France, 2006. [Google Scholar]
- Gopinath, P.; Kumar, C.N. Performance evaluation of HMAC mixes produced with gilsonite modified bitumen for heavily trafficked roads. Mater. Today Proc. 2021, 43, 941–946. [Google Scholar] [CrossRef]
- Espersson, M. Effect in the high modulus asphalt concrete with the temperature. Constr. Build. Mater. 2014, 71, 638–643. [Google Scholar] [CrossRef]
- Serfass, J.P.; Bense, P.; Pellevoisin, P. Properties and new developments of high modulus asphalt concrete. In Proceedings of the Eighth International Conference on Asphalt Pavements Federal Highway Administration, Seattle, WA, USA, 10–14 August 1997; Volume I. [Google Scholar]
- Baldo, N.; Miani, M.; Rondinella, F.; Valentin, J.; Vackcová, P.; Manthos, E. Stiffness data of high-modulus asphalt concretes for road pavements: Predictive modeling by machine-learning. Coatings 2022, 12, 54. [Google Scholar] [CrossRef]
- Bartkowiak, M.; Słowik, M. Development and Analysis of High-Modulus Asphalt Concrete Predictive Model. Materials 2023, 16, 4509. [Google Scholar] [CrossRef]
- Corte, J.F. Development and uses of hard-grade asphalt and of high-modulus asphalt mixes in France. Transp. Res. Circ. 2001, 503, 12–31. [Google Scholar]
- Goli, A.; Baditha, A.; Muppireddy, A.R.; Pandey, B.B. Comparison of various rutting parameters and modelling of creep and recovery behaviour of high modulus bituminous binders. Int. J. Pavement Res. Technol. 2019, 12, 648–658. [Google Scholar] [CrossRef]
- Yan, J.; Leng, Z.; Ling, C.; Zhu, J.; Zhou, L. Characterization and comparison of high-modulus asphalt mixtures produced with different methods. Constr. Build. Mater. 2020, 237, 117594. [Google Scholar] [CrossRef]
- Zhong, K.; Yang, X.; Luo, S. Performance evaluation of petroleum bitumen binders and mixtures modified by natural rock asphalt from Xinjiang China. Constr. Build. Mater. 2017, 154, 623–631. [Google Scholar] [CrossRef]
- Kök, B.V.; Yílmaz, M.; Turgut, P.; Kuloğlu, N. Evaluation of the mechanical properties of natural asphalt-modified hot mixture. Int. J. Mater. Res. 2012, 103, 506–512. [Google Scholar] [CrossRef]
- Wang, M.; Xing, C. Evaluation of microstructural features of Buton rock asphalt components and rheological properties of pure natural asphalt modified asphalt. Constr. Build. Mater. 2021, 267, 121132. [Google Scholar] [CrossRef]
- Lv, S.; Fan, X.; Yao, H.; You, L.; You, Z.; Fan, G. Analysis of performance and mechanism of Buton rock asphalt modified asphalt. J. Appl. Polym. Sci. 2019, 136, 46903. [Google Scholar] [CrossRef]
- Zhang, S.; Yue, J.; Wu, J.; Li, R. Influence of rock asphalt on self-healing behavior of asphalt mastics. Constr. Build. Mater. 2021, 310, 124851. [Google Scholar] [CrossRef]
- Mohammed, F.A.; Latief, R.H.; Albayati, A.H. Assessment of traditional asphalt mixture performance using natural asphalt from sulfur springs. J. Eng. 2024, 30, 54–73. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, M.; You, L.; Wu, S.; Ji, H. Performance and optimization of castor beans-based bio-asphalt and European rock-asphalt modified asphalt binder. Constr. Build. Mater. 2020, 240, 117951. [Google Scholar] [CrossRef]
- Caro, S.; Sánchez, D.B.; Caicedo, B. Methodology to characterise non-standard asphalt materials using DMA testing: Application to natural asphalt mixtures. Int. J. Pavement Eng. 2015, 16, 1–10. [Google Scholar] [CrossRef]
- Akinmade, D.; Anupam, K.; Kasbergen, C.; Erkens, S.; Samson, D.; Marco, P. Performance of natural asphalt as a paving material: A laboratory and field evaluation. Case Stud. Constr. Mater. 2024, 21, e03823. [Google Scholar] [CrossRef]
- Li, T.; Jin, Q.; Jiang, P.; Sun, H.; Ding, Y.; Yan, Z.; Shi, N. Performance optimization of modified gussasphalt binder prepared using natural asphalt. Front. Mater. 2022, 9, 840380. [Google Scholar] [CrossRef]
- Xing, C.; Li, M.; Liu, L.; Lu, R.; Liu, N.; Wu, W.; Yuan, D. A comprehensive review on the blending condition between virgin and RAP asphalt binders in hot recycled asphalt mixtures: Mechanisms, evaluation methods, and influencing factors. J. Clean. Prod. 2023, 398, 136515. [Google Scholar] [CrossRef]
- Li, M.; Liu, L.; Xing, C.; Liu, L.; Wang, H. Influence of rejuvenator preheating temperature and recycled mixture’s curing time on performance of hot recycled mixtures. Constr. Build. Mater. 2021, 295, 123616. [Google Scholar] [CrossRef]
- Hofko, B.; Handle, F.; Eberhardsteiner, L.; Hospodka, M.; Blab, R.; Füssl, J.; Grothe, H. Alternative approach toward the aging of asphalt binder. Transp. Res. Rec. 2015, 2505, 24–31. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H.; Sheng, Y.; Meng, J.; Cui, S.; Kim, Y.R.; Huang, S.; Qin, H. Effect of laboratory aging on the stiffness and fatigue cracking of asphalt mixture containing bamboo fiber. J. Clean. Prod. 2022, 333, 130120. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Zhang, F.; Wu, H.; Ge, Q. Effect of graphene oxide on aging properties of polyurethane-SBS modified asphalt and asphalt mixture. Polym. 2022, 14, 3496. [Google Scholar] [CrossRef]
- Yan, C.; Huang, W.; Tang, N. Evaluation of the temperature effect on Rolling Thin Film Oven aging for polymer modified asphalt. Constr. Build. Mater. 2017, 137, 485–493. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Lei, Y.; Ma, Y.; Yan, C. Effect of the laboratory short-term aging temperature on the chemical and rheological characteristics of high modulus asphalts. Constr. Build. Mater. 2022, 314, 125569. [Google Scholar] [CrossRef]
- Anderson, D.A.; Bonaquist, R.F. Investigation of Short-Term Laboratory Aging of Neat and Modified Asphalt Binders; Transportation Research Board: Washington, DC, USA, 2012; Volume 709. [Google Scholar] [CrossRef]
- NCHRP 20-44; Implementation of Proposed AASHTO Standards for Asphalt Binders and Mixtures. NCHRP Implementation Support Program: Washington, DC, USA, 2022.
- Xing, C.; Qin, J.; Cheng, Z.; Li, M.; Lu, Q. Investigation on the Short-Term aging Scheme for High Viscosity Modified Bitumen. Materials 2023, 16, 3910. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Tang, S.; Chang, Z.; Han, Z.; Li, H.; Zhu, B. A comprehensive review on the plant-mixed cold recycling technology of emulsified asphalt: Raw materials and factors affecting performances. Constr. Build. Mater. 2024, 439, 137344. [Google Scholar] [CrossRef]
- Hu, M.; Lyu, L.; Pahlavan, F.; Han, P.; Sun, D.; Fini, E.H. Toward Sustainable Non-Emitting Asphalts: Understanding Diffusion–Adsorption Mechanisms of Hazardous Organic Compounds. Adv. Sustain. Syst. 2025, 471, 2400868. [Google Scholar] [CrossRef]
- Kim, W.; Kim, W.; Kim, Y.; Kim, K.W. Evaluation of recovery level of recycled asphalt mixture by RAP contents using absolute viscosity, GPC and PG pass/fail temperature. J. Korean Asph. Inst. 2024, 13, 339–347. [Google Scholar]
- Wang, T.; Chen, Z.; Wang, Y.; Cui, Y.; Sun, Y.; Ning, R.; Tian, Y.; Zhang, Y. The Effect of aging on the Molecular Distribution of Crumb Rubber Modified Asphalt Based on the Gel Permeation Chromatography Test. Building 2023, 13, 1165. [Google Scholar] [CrossRef]
- Li, M.; Liu, L.; Meng, Y.; Wang, W. A novel gel permeation chromatography-based assessment methodology for aging condition of SBS modified asphalt in recycled asphalt pavement. Constr. Build. Mater. 2023, 395, 132337. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering, China. Ministry of Transportation: Beijing, China, 2011.
- American Association of State Highway and Transportation Officials (AASHTO). Standard Specifications for Transportation Materials and Methods of Sampling and Testing and Provisional Standards (2016 Edition); American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2016. [Google Scholar]
- ASTM D1856-21; Standard Test Method for Recovery of Asphalt from Solution by Abson Method. ASTM: West Conshohocken, PA, USA, 2009.
- Li, M.; Xing, C.; Liu, L.; Huang, W.; Meng, Y. Gel permeation chromatography-based method for assessing the properties of binders in reclaimed asphalt pavement mixtures. Constr. Build. Mater. 2022, 316, 126005. [Google Scholar] [CrossRef]
- AASHTO T 350-19; Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2023.
- Wang, S.; Huang, W. Investigation of aging behavior of terminal blend rubberized asphalt with SBS polymer. Constr. Build. Mater. 2021, 267, 120870. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W.; Liu, X.; Lin, P. Evaluation of the aging Properties of Terminal Blend Hybrid Asphalt Based on Chemical and Rheological Methods. Sustainability 2022, 14, 7865. [Google Scholar] [CrossRef]
Property | Base Bitumen | SBS-Modified Bitumen | HMB |
---|---|---|---|
Penetration (25 °C, 0.1 mm) | 68 | 57 | 23.7 |
Softening point (℃) | 48.5 | 85 | 82.8 |
Ductility (5 °C, cm) | - | 28.5 | - |
Ductility (15 °C, cm) | >100 | - | - |
Ductility (25 °C, cm) | - | - | 62.5 |
Ash content | - | - | 19.7 |
Bitumen Type | Short-Term Ageing | Long-Term Ageing | Identification |
---|---|---|---|
HMB | - | - | HMB-virgin |
163 °C TFOT | - | HMB-ST163 | |
173 °C TFOT | - | HMB-ST173 | |
183 °C TFOT | - | HMB-ST183 | |
193 °C TFOT | - | HMB-ST193 | |
TFOT at suitable temperature | 20 h PAV | HMB-LT20 | |
TFOT at suitable temperature | 40 h PAV | HMB-LT40 | |
TFOT at suitable temperature | 60 h PAV | HMB-LT60 | |
Base bitumen | - | - | BASE-virgin |
153 °C TFOT | - | BASE-ST153 | |
163 °C TFOT | - | BASE-ST163 | |
173 °C TFOT | - | BASE-ST173 | |
183 °C TFOT | - | BASE-ST183 | |
TFOT at suitable temperature | 20 h PAV | BASE-LT20 | |
TFOT at suitable temperature | 40 h PAV | BASE-LT40 | |
TFOT at suitable temperature | 60 h PAV | BASE-LT60 | |
SBS-modified bitumen | - | - | SBS-virgin |
153 °C TFOT | - | SBS-ST153 | |
163 °C TFOT | - | SBS-ST163 | |
173 °C TFOT | - | SBS-ST173 | |
183 °C TFOT | - | SBS-ST183 | |
TFOT at suitable temperature | 20 h PAV | SBS-LT20 | |
TFOT at suitable temperature | 40 h PAV | SBS-LT40 | |
TFOT at suitable temperature | 60 h PAV | SBS-LT60 |
Bitumen Type | Ageing Periods | CAI | AAI |
---|---|---|---|
HMB | HMB-LT20 | 2.62 | 1.10 |
HMB-LT40 | 4.34 | 1.12 | |
HMB-LT60 | 6.60 | 1.17 | |
Base bitumen | BASE-LT20 | 5.79 | 1.37 |
BASE-LT40 | 9.44 | 1.46 | |
BASE-LT60 | 15.15 | 1.58 | |
SBS-modified bitumen | SBS-LT20 | 5.93 | 1.20 |
SBS-LT40 | 12.45 | 1.30 | |
SBS-LT60 | 22.40 | 1.48 |
Rheological Properties | A | B | C | R2 |
---|---|---|---|---|
Complex modulus (G*) at 58 °C (MPa) | −996.96 | 41.46 | 59.76 | 0.956 |
Jnr3.2 at 58 °C (kPa−1) | 0.085 | −0.003 | −0.005 | 0.872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Li, X.; Li, M.; Liu, L.; Cheng, Z.; Han, Z. Investigation on the Ageing Behaviour of High-Modulus Modified Bitumen Based on Rheological and Chemical Approaches. Materials 2025, 18, 1332. https://doi.org/10.3390/ma18061332
Feng X, Li X, Li M, Liu L, Cheng Z, Han Z. Investigation on the Ageing Behaviour of High-Modulus Modified Bitumen Based on Rheological and Chemical Approaches. Materials. 2025; 18(6):1332. https://doi.org/10.3390/ma18061332
Chicago/Turabian StyleFeng, Xuemao, Xin Li, Mingchen Li, Liping Liu, Zhenbang Cheng, and Zhanchuang Han. 2025. "Investigation on the Ageing Behaviour of High-Modulus Modified Bitumen Based on Rheological and Chemical Approaches" Materials 18, no. 6: 1332. https://doi.org/10.3390/ma18061332
APA StyleFeng, X., Li, X., Li, M., Liu, L., Cheng, Z., & Han, Z. (2025). Investigation on the Ageing Behaviour of High-Modulus Modified Bitumen Based on Rheological and Chemical Approaches. Materials, 18(6), 1332. https://doi.org/10.3390/ma18061332