Investigation on the Factors Affecting the Exhaust Degradation Performance of Porous Pavement Mixtures with Nano-TiO2 Photocatalysts
Abstract
:1. Introduction
2. Materials
2.1. Photocatalytic Material
2.2. Photocatalytic Porous Asphalt Mixtures
2.3. Photocatalytic Porous Cement Concrete
3. Test Methods
Types | C3H8 | CO | CO2 | NO | N2 |
---|---|---|---|---|---|
Proportion/% | 6 | 5 | 12 | 25 | 52 |
4. Results and Discussions
4.1. Photocatalytic Reaction Characteristics of Different Exhaust Pollutants
4.2. Influence of Porous Mixture Parameters on Exhaust Degradation Efficiency
4.2.1. Void Ratio
- Porous asphalt mixtures
- 2.
- Porous cement concrete
4.2.2. Photocatalyst Dosage
4.2.3. Coupled Effects of Void Ratio and Photocatalytic Material on Degradation Efficiency
4.3. Influence of Pavement Structure on the Efficiency of Exhaust Degradation
4.3.1. Pavement Materials
4.3.2. Influence of Pavement Thickness on Exhaust Degradation
4.4. Optimal Materials and Structures for Photocatalytic Pavements
5. Conclusions
- In the exhaust degradation test, the concentrations of different exhaust components exhibited a decreasing trend. However, the photocatalytic reaction rates of the various exhaust components differed. The reaction rates of NO and CO followed the “slow–fast–steady” model, while the reaction rates of NO2 and HC followed the “fast–slow–steady” model. This paper proposes using two critical points, P and Q, from these three stages to evaluate the photocatalytic reaction characteristics.
- The increase in the void ratio does not affect the final equilibrium state of the photocatalytic reaction. However, whether in the case of porous asphalt mixture or porous 435 cement concrete, as the void ratio increases, the time required for the photocatalytic reaction to reach equilibrium decreases, and the reaction rate accelerates. The increase in the void ratio of porous asphalt mixtures and porous cement concrete reduced the time required to reach equilibrium by an average of 4.4 and 2.3 min for the four pollutants monitored, respectively.
- The effect of increasing photocatalyst dosage on photocatalytic exhaust degradation efficiency is similar to that of increasing the void ratio. While it does not alter the final equilibrium state of the reaction, it enhances the reaction rate and shortens the time required to reach equilibrium. Increasing the dosage of photocatalytic material by 2 kg/m3 increased NO degradation by an average of 1.5% and reduced the time required to reach equilibrium by an average of 0.8 min.
- The NO degradation rate curves of porous mixtures of different material types under the same conditions exhibit high similarity. However, the degradation rate of cement concrete in the initial reaction phase is faster than that of porous asphalt mixture, and the reaction time to reach relative equilibrium state was 2 min earlier than that of porous asphalt mixtures.
- As the specimen thickness increases, both the average degradation rate and the 30 min degradation rate improve. However, due to the limited penetration depth of light radiation and exhaust diffusion, a greater thickness has limited significance for the exhaust degradation performance of the pavement.
- This study has not yet evaluated the functional durability of exhaust degradation pavements, or the comprehensive economic and environmental benefits of exhaust degradation pavements. Meanwhile, the difficulties faced in the current research on exhaust degradation pavements are the functional evaluation of exhaust degradation pavements in real road environments and the measurement of cumulative degradation pollutants. These directions should be paid attention to in further research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PA | Porous asphalt |
PAC | Porous asphalt concrete |
PC | Porous concrete |
BET | BET surface area |
P | The critical time “a–b” |
Q | The critical time “b–c” |
References
- Huang, K.; Zhou, P.; Liu, Z.; Tang, T.; Zhang, H.; Jiang, W. The calculation and distribution of CAV carbon emissions on urban transportation systems: A comparative analysis of renewable and non-renewable energy sources. Renew. Energy 2024, 230, 120884. [Google Scholar] [CrossRef]
- Haghbayan, S.A.; Geroliminis, N.; Akbarzadeh, M. Community detection in large scale congested urban road networks. PLoS ONE 2021, 16, e0260201. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Yan, G.; Shen, A. Traffic and emissions impact of the combination scenarios of air pollution charging fee and subsidy. J. Clean. Prod. 2018, 197, 678–689. [Google Scholar] [CrossRef]
- Sassykova, L.; Aubakirov, Y.; Sendilvelan, S.; Tashmukhambetova, Z.K.; Faizullaeva, M.; Bhaskar, K.; Batyrbayeva, A.; Ryskaliyeva, R.; Tyussyupova, B.; Zhakupova, A. The main components of vehicle exhaust gases and their effective catalytic neutralization. Orient. J. Chem. 2019, 35, 110. [Google Scholar] [CrossRef]
- Huang, Y.; Mok, W.-C.; Yam, Y.-S.; Zhou, J.L.; Surawski, N.C.; Organ, B.; Chan, E.F.; Mofijur, M.; Mahlia, T.M.I.; Ong, H.C. Evaluating in-use vehicle emissions using air quality monitoring stations and on-road remote sensing systems. Sci. Total Environ. 2020, 740, 139868. [Google Scholar] [CrossRef]
- Kuppili, S.K.; Alshetty, V.D.; Diya, M.; Nagendra, S.S.; Ramadurai, G.; Ramesh, A.; Gulia, S.; Namdeo, A.; Maji, K.; Bell, M. Characteristics of real-world gaseous exhaust emissions from cars in heterogeneous traffic conditions. Transp. Res. Part D Transp. Environ. 2021, 95, 102855. [Google Scholar] [CrossRef]
- Bej, D.; Chattaraj, N. Air pollution from vehicle-tailpipe emissions and diagnostic approaches through cyber–physical platform-a review. Microprocess. Microsyst. 2023, 98, 104805. [Google Scholar] [CrossRef]
- Hassan, M.M.; Dylla, H.; Asadi, S.; Mohammad, L.N.; Cooper, S. Laboratory evaluation of environmental performance of photocatalytic titanium dioxide warm-mix asphalt pavements. J. Mater. Civ. Eng. 2012, 24, 599–605. [Google Scholar] [CrossRef]
- Perez, L.; Declercq, C.; Iñiguez, C.; Aguilera, I.; Badaloni, C.; Ballester, F.; Bouland, C.; Chanel, O.; Cirarda, F.B.; Forastiere, F. Chronic burden of near-roadway traffic pollution in 10 European cities (APHEKOM network). Eur. Respir. J. 2013, 42, 594–605. [Google Scholar] [CrossRef]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Wang, H.; Wang, W.; Zheng, K. Laboratory Study on Performance Evaluation and Automobile Exhaust Degradation of Nano-TiO2 Particles-Modified Asphalt Materials. Adv. Mater. Sci. Eng. 2021, 2021, 5574013. [Google Scholar] [CrossRef]
- Carneiro, J.; Azevedo, S.; Teixeira, V.; Fernandes, F.; Freitas, E.; Silva, H.; Oliveira, J. Development of photocatalytic asphalt mixtures by the deposition and volumetric incorporation of TiO2 nanoparticles. Constr. Build. Mater. 2013, 38, 594–601. [Google Scholar] [CrossRef]
- Poon, C.S.; Cheung, E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr. Build. Mater. 2007, 21, 1746–1753. [Google Scholar] [CrossRef]
- Sikkema, J.K.; Ong, S.-K.; Alleman, J.E. Photocatalytic concrete pavements: Laboratory investigation of NO oxidation rate under varied environmental conditions. Constr. Build. Mater. 2015, 100, 305–314. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, M.; Gao, Q.; Yue, M.; Ji, G.; Deng, C. Attenuation law of permeable pavement in sponge city. Chang. Daxue Xuebao (Ziran Kexue Ban)/J. Chang. Univ. (Nat. Sci. Ed.) 2021, 41, 12–21. [Google Scholar]
- Zhang, L.; Lu, Q.; Shan, R.; Zhang, F.; Muhammad, Y.; Huang, K. Photocatalytic degradation of vehicular exhaust by nitrogen-doped titanium dioxide modified pavement material. Transp. Res. Part D Transp. Environ. 2021, 91, 102690. [Google Scholar] [CrossRef]
- Lu, C.; Zheng, M.; Liu, J.; Zhu, R.; Su, Y. Characterization of self-cleaning pavement coatings with catalytic-hydrophobic synergistic effects. Constr. Build. Mater. 2023, 397, 132246. [Google Scholar] [CrossRef]
- Shen, S.; Burton, M.; Jobson, B.; Haselbach, L. Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment. Constr. Build. Mater. 2012, 35, 874–883. [Google Scholar] [CrossRef]
- Mousavi Rad, S.; Kamboozia, N.; Ameri, M.; Mirabdolazimi, S.M. Feasibility of concurrent improvement of pollutants-absorption ability from surface runoff and mechanical performance of asphalt mixtures by using photocatalytic nanomodified porous asphalt. J. Mater. Civ. Eng. 2023, 35, 04023248. [Google Scholar] [CrossRef]
- Jimenez-Relinque, E.; Rubiano, F.; Hingorani, R.; Grande, M.; Castillo, A.; Nevshupa, R.; Castellote, M. New holistic conceptual framework for the assessment of the performance of photocatalytic pavement. Front. Chem. 2020, 8, 743. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Jia, Z.; Wang, F.; Ding, L. Test method and material design of asphalt mixture with the function of photocatalytic decomposition of automobile exhaust. Constr. Build. Mater. 2019, 215, 298–309. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, T.; Liu, P.; Oeser, M. Developed photocatalytic asphalt mixture of open graded friction course for degrading vehicle exhaust. J. Clean. Prod. 2021, 279, 123453. [Google Scholar] [CrossRef]
- Dylla, H.; Hassan, M.M.; Mohammad, L.N.; Rupnow, T.; Wright, E. Evaluation of environmental effectiveness of titanium dioxide photocatalyst coating for concrete pavement. Transp. Res. Rec. 2010, 2164, 46–51. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, M.; Wang, Q.; Yang, J.; Lin, T. Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates. Constr. Build. Mater. 2016, 124, 897–905. [Google Scholar] [CrossRef]
- Sañudo-Fontaneda, L.A.; Andres-Valeri, V.C.; Costales-Campa, C.; Cabezon-Jimenez, I.; Cadenas-Fernandez, F. The long-term hydrological performance of permeable pavement systems in northern Spain: An approach to the “end-of-life” concept. Water 2018, 10, 497. [Google Scholar] [CrossRef]
- tur Rasool, R.; Hongru, Y.; Hassan, A.; Wang, S.; Zhang, H. In-field aging process of high content SBS modified asphalt in porous pavement. Polym. Degrad. Stab. 2018, 155, 220–229. [Google Scholar] [CrossRef]
- Smith, S.A. Energy Policy and Conservation Act of 1975; U.S. Government Publishing Office: Washington, DC, USA, 1973. [Google Scholar]
- Davis, G. California Assembly Bill No. 1493. In Environmental Policy Collection; California Secretary of State: Sacramento, CA, USA, 2002. [Google Scholar]
- Shim, E.; Park, H.; Bae, C. Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel 2020, 262, 116436. [Google Scholar] [CrossRef]
- Zhang, W.D.; Lu, J.; Xu, P.; Zhang, Y. Moving towards Sustainability: Road Grades and On-Road Emissions of Heavy-Duty Vehicles-A Case Study. Sustainability 2015, 7, 12644–12671. [Google Scholar] [CrossRef]
- Ko, M. Incorporating Vehicle Emissions Models into the Geometric Highway Design Process Application on Horizontal Curves. Transp. Res. Rec. 2015, 2503, 1–9. [Google Scholar] [CrossRef]
- Zhang, M.; Shan, C.; Wang, W.W.; Pang, J.R.; Guo, S. Do driving restrictions improve air quality: Take Beijing-Tianjin for example? Sci. Total Environ. 2020, 712, 136408. [Google Scholar] [CrossRef]
- Tosun, H.B.; Alver, A.; Baştürk, E. Removal of exhaust gas with advanced solar photocatalytic asphalt applications. KSCE J. Civ. Eng. 2022, 26, 13–24. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical Specification for Permeable Asphalt Pavement; Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2012. [Google Scholar]
- JTGE20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Scientific Research Publishing: Glendale, CA, USA, 2011; p. 373P.
- Lu, C.; Zheng, M.; Lei, B.; Zhu, R.; Su, Y. Simulation test of short-term and long-term clogging of permeable pavement. Environ. Sci. Pollut. Res. 2024, 31, 28734–28753. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, S.; Zhang, J.; Fan, J. Photocatalytic degradation of vehicle exhausts on asphalt pavement by TiO2/rubber composite structure. Constr. Build. Mater. 2015, 81, 224–232. [Google Scholar] [CrossRef]
- Wang, D.; Leng, Z.; Yu, H.; Hüben, M.; Kollmann, J.; Oeser, M. Durability of epoxy-bonded TiO2-modified aggregate as a photocatalytic coating layer for asphalt pavement under vehicle tire polishing. Wear 2017, 382, 1–7. [Google Scholar] [CrossRef]
Appearance | pH | Crystalline Phases | Purity (%) | Particle Diameter (nm) | BET (m2/g) | Surface Modifications |
---|---|---|---|---|---|---|
White powder | 6–8 | Anatase | >99.9 | 18 | 150–200 | unmodified |
Number | Types of Photocatalytic Materials | Photocatalytic Material Dosage (kg/m3) | Gradation Types | Thickness (cm) |
---|---|---|---|---|
PA-0C1T5 | nano TiO2 | 0 | PAC-13C1 | 5 |
PA-0C2T5 | nano TiO2 | 0 | PAC-13C2 | 5 |
PA-0C3T5 | nano TiO2 | 0 | PAC-13C3 | 5 |
PA-5C1T5 | nano TiO2 | 5.0 | PAC-13C1 | 5 |
PA-5C2T5 | nano TiO2 | 5.0 | PAC-13C2 | 5 |
PA-5C3T5 | nano TiO2 | 5.0 | PAC-13C3 | 5 |
PA-6C1T5 | nano TiO2 | 6.0 | PAC-13C1 | 5 |
PA-6C2T5 | nano TiO2 | 6.0 | PAC-13C2 | 5 |
PA-6C3T5 | nano TiO2 | 6.0 | PAC-13C3 | 5 |
PA-7C1T5 | nano TiO2 | 7.0 | PAC-13C1 | 5 |
PA-7C2T5 | nano TiO2 | 7.0 | PAC-13C2 | 5 |
PA-7C3T5 | nano TiO2 | 7.0 | PAC-13C3 | 5 |
Number | Gradation | Specimen Thickness (cm) |
---|---|---|
1 | PAC13-C1 | 5 |
2 | PAC13-C1 | 4 |
3 | PAC13-C1 | 3 |
4 | PAC13-C2 | 5 |
5 | PAC13-C2 | 4 |
6 | PAC13-C2 | 3 |
7 | PAC13-C3 | 5 |
8 | PAC13-C3 | 4 |
9 | PAC13-C3 | 3 |
Void Ratio (%) | C/A | Cement (kg/m3) | Water (kg/m3) | Coarse Aggregate (kg/m3) | TiO2 (%) |
---|---|---|---|---|---|
23 | 1:5 | 341.3 | 109.2 | 1706.4 | 0.3 |
25 | 1:6 | 284.4 | 91.0 | 6.9 |
Sieve Hole Size (mm) | Mass Percentage Through the Sieve Hole (%) | |
---|---|---|
PC-16G | PC-13G | |
26.5 | 0 | 0 |
16 | 20 | 0 |
9.5 | 20 | 25 |
4.75 | 60 | 75 |
Number | Types of Photocatalytic Materials | Photocatalytic Material Dosage (kg/m3) | Gradation Types | Thickness (cm) |
---|---|---|---|---|
PC-013T5 | nano TiO2 | 0 | PC-13G | 5 |
PC-016T5 | nano TiO2 | 0 | PC-16G | 5 |
PC-513T5 | nano TiO2 | 5.0 | PC-13G | 5 |
PC-516T5 | nano TiO2 | 5.0 | PC-16G | 5 |
PC-613T5 | nano TiO2 | 6.0 | PC-13G | 5 |
PC-616T5 | nano TiO2 | 6.0 | PC-16G | 5 |
PC-713T5 | nano TiO2 | 7.0 | PC-13G | 5 |
PC-716T5 | nano TiO2 | 7.0 | PC-16G | 5 |
Material Type | Photocatalytic Material Dosage (kg/m3) | Void Ratio (%) | Thickness (cm) |
---|---|---|---|
Porous asphalt mixtures | 7 | 24 | 3–5 cm |
porous cement concrete | 7 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Bi, C.; Lu, C.; Fu, J.; Zheng, M.; Ding, Q.; Liu, J. Investigation on the Factors Affecting the Exhaust Degradation Performance of Porous Pavement Mixtures with Nano-TiO2 Photocatalysts. Materials 2025, 18, 1139. https://doi.org/10.3390/ma18051139
Yan W, Bi C, Lu C, Fu J, Zheng M, Ding Q, Liu J. Investigation on the Factors Affecting the Exhaust Degradation Performance of Porous Pavement Mixtures with Nano-TiO2 Photocatalysts. Materials. 2025; 18(5):1139. https://doi.org/10.3390/ma18051139
Chicago/Turabian StyleYan, Wenke, Congwei Bi, Chuan Lu, Jikai Fu, Mulian Zheng, Qiang Ding, and Jiasheng Liu. 2025. "Investigation on the Factors Affecting the Exhaust Degradation Performance of Porous Pavement Mixtures with Nano-TiO2 Photocatalysts" Materials 18, no. 5: 1139. https://doi.org/10.3390/ma18051139
APA StyleYan, W., Bi, C., Lu, C., Fu, J., Zheng, M., Ding, Q., & Liu, J. (2025). Investigation on the Factors Affecting the Exhaust Degradation Performance of Porous Pavement Mixtures with Nano-TiO2 Photocatalysts. Materials, 18(5), 1139. https://doi.org/10.3390/ma18051139