Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikubanni, P.P.; Adeleke, A.A.; Adekanye, T.A.; Aladegboye, O.J.; Agboola, O.O.; Ogunsemi, B.T. Particleboard from Biomass Wastes: A Review of Production Techniques, Properties, and Future Trends. Res. Eng. Struct. Mater. 2024. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Dukarska, D.; Antov, P.; Stuper-Szablewska, K.; Dziurka, D.; Mirski, R. Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production. Appl. Sci. 2024, 14, 5627. [Google Scholar] [CrossRef]
- Reh, R.; Kristak, L.; Kral, P.; Pipiska, T.; Jopek, M. Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow. Polymers 2024, 16, 1532. [Google Scholar] [CrossRef]
- Hua, L.S.; Chen, L.W.; Geng, B.J.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W. Particleboard from Agricultural Biomass and Recycled Wood Waste: A Review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Benthien, J.T.; Lüdtke, J.; Ohlmeyer, M. Effect of Increasing Core Layer Particle Thickness on Lightweight Particleboard Properties. Eur. J. Wood Wood Prod. 2019, 77, 1029–1043. [Google Scholar] [CrossRef]
- Boruszewski, P.; Borysiuk, P.; Jankowska, A.; Pazik, J. Low-Density Particleboards Modified with Expanded and Unexpanded Fillers—Characteristics and Properties. Materials 2022, 15, 4430. [Google Scholar] [CrossRef]
- Boruszewski, P.; Borysiuk, P.; Jankowska, A.; Pazik, J. Low-Density Particleboards Modified with Blowing Agents—Characteristic and Properties. Materials 2022, 15, 4528. [Google Scholar] [CrossRef]
- Mirski, R.; Dziurka, D.; Kuliński, M.; Derkowski, A. Lightweight Insulation Boards Based on Lignocellulosic Particles Glued with Agents of Natural Origin. Materials 2021, 14, 3219. [Google Scholar] [CrossRef]
- Luo, S.; Gao, L.; Guo, W. Effect of Face Layer Manipulation on the Density Profile and Properties of Low Density Particleboard. Wood Res. 2020, 65, 125–134. [Google Scholar] [CrossRef]
- Fehrmann, J.; Belleville, B.; Ozarska, B. Effects of Particle Dimension and Constituent Proportions on Internal Bond Strength of Ultra-Low-Density Hemp Hurd Particleboard. Forests 2022, 13, 1967. [Google Scholar] [CrossRef]
- Bekhta, P.; Kozak, R.; Gryc, V.; Sebera, V.; Tippner, J. Effects of Wood Particles from Deadwood on the Properties and Formaldehyde Emission of Particleboards. Polymers 2022, 14, 3535. [Google Scholar] [CrossRef]
- Hurmekoski, E.; Seppälä, J.; Kilpeläinen, A.; Kunttu, J. Contribution of Wood-Based Products to Climate Change Mitigation. In Forest Bioeconomy and Climate Change; Springer International Publishing: Cham, Switzerland, 2022; pp. 129–149. [Google Scholar]
- Grzegorzewska, E.; Burawska-Kupniewska, I.; Boruszewski, P.; Grzegorzewska, E.; Burawska-Kupniewska, I.; Boruszewski, P. Economic Profitability of Particleboards Production with a Diversified Raw Material Structure. Maderas-Cienc. Tecnol. 2020, 22, 537–548. [Google Scholar] [CrossRef]
- Ojewumi, M.E.; Ojewumi, E.O.; Ibrahim, O.O.; Oyinlola, O.R.; Oladapo, F.O.; Jolayemi, K.J. Production of Particleboard from Agricultural Waste-A Sustainable Approach to Waste Management. J. Sustain. Mater. Process. Manag. 2023, 3, 72–90. [Google Scholar] [CrossRef]
- Najahi, A.; Aguado, R.J.; Tarrés, Q.; Boufi, S.; Delgado-Aguilar, M. Harvesting Value from Agricultural Waste: Dimensionally Stable Fiberboards and Particleboards with Enhanced Mechanical Performance and Fire Retardancy through the Use of Lignocellulosic Nanofibers. Ind. Crops Prod. 2023, 204, 117336. [Google Scholar] [CrossRef]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Réh, R.; Krišťák, Ľ. Sound-Absorption Coefficient of Bark-Based Insulation Panels. Polymers 2020, 12, 1012. [Google Scholar] [CrossRef]
- Mirski, R.; Derkowski, A.; Kawalerczyk, J.; Dziurka, D.; Walkiewicz, J. The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process. Materials 2022, 15, 5731. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.A.; Lopes, S.; Ferreira, N.; Santos, J.; Martins, J.M.; Carvalho, L.H. Binderless Particleboards Obtained 100% from Winery By-Products for the Packaging Industry. Front. Food. Sci. Technol. 2024, 4, 1376415. [Google Scholar] [CrossRef]
- Rossi, L.; Wechsler, L.; Peltzer, M.A.; Ciannamea, E.M.; Ruseckaite, R.A.; Stefani, P.M. Sustainable Particleboards Based on Brewer’s Spent Grains. Polymers 2024, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Rahman, W.; Tamat, N.S.M.; Kasim, J. The Suitability of Fast Growing Tree Species for Particleboard Production. IJRTE 2019, 8, 3156–3161. [Google Scholar]
- Tamat, N.S.M.; Amini, M.H.M.; Hermawan, A.; Ramle, S.F.M.; Ibrahim, W.S.F.A.W.; Rahman, W.M.N.W.A. Performance of Particleboard from Fast-Growing Species. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Mirski, R.; Kawalerczyk, J.; Dziurka, D.; Stuper-Szablewska, K.; Walkiewicz, J. The Effect of Using Wood Chips Exposed to Mold Fungi on the Properties of Chipboard. Wood Mater. Sci. Eng. 2024, 19, 920–930. [Google Scholar] [CrossRef]
- Nemli, G.; Ayan, E.; Ay, N.; Tiryaki, S. Utilization Potential of Waste Wood Subjected to Insect and Fungi Degradation for Particleboard Manufacturing. Eur. J. Wood Wood Prod. 2018, 76, 759–766. [Google Scholar] [CrossRef]
- Iždinskỳ, J.; Vidholdová, Z.; Reinprecht, L. Particleboards from Recycled Wood. Forests 2020, 11, 1166. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Luedtke, J.; Nopens, M.; Krause, A. Production of Wood-Based Panel from Recycled Wood Resource: A Literature Review. Eur. J. Wood Wood Prod. 2023, 81, 557–570. [Google Scholar] [CrossRef]
- Owodunni, A.A.; Lamaming, J.; Hashim, R.; Taiwo, O.F.A.; Hussin, M.H.; Mohamad Kassim, M.H.; Bustami, Y.; Sulaiman, O.; Amini, M.H.M.; Hiziroglu, S. Adhesive Application on Particleboard from Natural Fibers: A Review. Polym. Compos. 2020, 41, 4448–4460. [Google Scholar] [CrossRef]
- Bispo, R.A.; Panzera, T.H.; Lahr, F.A.R.; Christoforo, A.L.; Trevisan, M.F.; da Silva, S.A.M.; de Moura Aquino, V.B.; de Paula Saraiva, R.L.; Arroyo, F.N.; Molina, J.C. Production and Evaluation of Particleboards Made of Coconut Fibers, Pine and Eucalyptus Using Bicomponent Polyurethane-Castor Oil Resin. BioResources 2022, 17, 3944–3951. [Google Scholar] [CrossRef]
- Shi, J.L.; Zhang, S.Y.; Riedl, B. Effect of Juvenile Wood on Strength Properties and Dimensional Stability of Black Spruce Medium-Density Fiberboard Panels. Holzforschung 2005, 59, 1–9. [Google Scholar] [CrossRef]
- Tomczak, A.; Jelonek, T. Technical Parameters of Juvenile and Mature Wood in Scots Pine (Pinus sylvestris L.)—Parametry Techniczne Młodocianego i Dojrzałego Drewna Sosny Zwyczajnej (Pinus sylvestris L.). Sylwan 2012, 156, 695–702. [Google Scholar]
- Zobel, B.J.; Sprague, J.R. Juvenile Wood in Forest Trees; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Moore, J.R.; Cown, D.J. Corewood (Juvenile Wood) and Its Impact on Wood Utilisation. Curr. For. Rep. 2017, 3, 107–118. [Google Scholar] [CrossRef]
- Cloutier, A.; Ananias, R.A.; Ballerini, A.; Pecho, R. Effect of Radiata Pine Juvenile Wood on the Physical and Mechanical Properties of Oriented Strandboard. Eur. J. Wood Wood Prod. 2007, 65, 157–162. [Google Scholar] [CrossRef]
- Pecho, R.; Ananias, R.A.; Ballerini, A.; Cloutier, A. Influence of Radiata Pine Juvenile Wood on the Physical and Mechanical Properties of Oriented Strand Boards (OSB). Rev. Bosque 2005, 26, 123–132. [Google Scholar]
- Pipíška, T.; Nociar, M.; Král, P.; Ráheľ, J.; Bekhta, P.; Réh, R.; Krišťák, Ľ.; Jopek, M.; Pijáková, B.; Wimmer, R.; et al. Characterization of Randomly Oriented Strand Boards Manufactured from Juvenile Wood of Underutilized Wood Species. Eur. J. Wood Wood Prod. 2024, 82, 927–941. [Google Scholar] [CrossRef]
- Pugel, A.D.; Price, E.W.; Hse, C.-Y. Composites from Southern Pine Juvenile Wood. Part 1. Panel Fabrication and Initial Properties. For. Prod. J. 1990, 40, 29–33. [Google Scholar]
- Pugel, A.D.; Price, E.W.; Hse, C.-Y. Composites from Southern Pine Juvenile Wood. Part 2. Durability and Dimensional Stability. For. Prod. J. 1990, 40, 57–61. [Google Scholar]
- PN-77-D-04101; Wood. Determination of Density. Polski Komitet Normalizacyjny: Warszawa, Poland, 1977.
- Available online: https://www.bdl.lasy.gov.pl/portal/mapy (accessed on 20 January 2025).
- Dukarska, D.; Rogoziński, T.; Pędzik, M.; Rogozińska, W.; Czarnecki, R. Characteristics of Straw Particles of Selected Grain Species Purposed for the Production of Lignocellulose Particleboards. Part. Sci. Technol. 2021, 39, 213–222. [Google Scholar] [CrossRef]
- Dukarska, D.; Rogoziński, T.; Antov, P.; Kristak, L.; Kmieciak, J. Characterisation of Wood Particles Used in the Particleboard Production as a Function of Their Moisture Content. Materials 2022, 15, 48. [Google Scholar] [CrossRef]
- EN 319; Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 310; Wood-Based Panels-Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1999.
- EN 317; Particleboards and Fibreboards—Determination of Swelling in Thickness After Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1998.
- Suo, S.; Bowyer, J.L. Simulation Modeling of Particleboard Density Profile. Wood Fiber Sci. 1994, 26, 397–411. [Google Scholar]
- Korai, H. Effects of Density Profile on Bending Strength of Commercial Particleboard. For. Prod. J. 2022, 72, 85–91. [Google Scholar] [CrossRef]
- Laskowska, A. Characteristics of the Pressing Process and Density Profile of MUPF-Bonded Particleboards Produced from Waste Plywood. Materials 2024, 17, 850. [Google Scholar] [CrossRef]
- Fabisiak, E.; Fabisiak, B.; Krauss, A. Radial Variation in Tracheid Lengths in Dominant Trees of Selected Coniferous Species. BioResources 2020, 15, 7330–7341. [Google Scholar] [CrossRef]
- Krauss, A.; Moliński, W.; Kúdela, J.; Cunderlík, I. Differences in the Mechanical Properties of Earlyand Latewood within Individual Annual Rings in Dominant Pine Tree (Pinus sylvestris L.). Wood Res. 2011, 56, 1–12. [Google Scholar]
- Koubaa, A.; Isabel, N.; Zhang, S.Y.; Beaulieu, J.; Bousquet, J. Transition from Juvenile to Mature Wood in Black Spruce (Picea Mariana (Mill.) B.S.P.). Wood Fiber Sci. 2005, 37, 445–455. [Google Scholar]
- Severo, E.T.D.; Calonego, F.W.; Sansígolo, C.A. Physical and Chemical Changes in Juvenile and Mature Woods of Pinus Elliottii Var. Elliottii by Thermal Modification. Eur. J. Wood Wood Prod. 2012, 70, 741–747. [Google Scholar] [CrossRef]
- Groom, L.H.; Mott, L.; Shaler, S. Mechanical Properties of Individual Southern Pine Fibers. Part I. Determination of Variability of Stress-Strain Curves with Respect to Tree Height and Juvenility. Wood Fiber Sci. 2002, 34, 14–27. [Google Scholar]
- Mott, L.; Groom, L.; Shaler, S. Mechanical Properties of Individual Southern Pine Fibers: Part II. Comparison of Earlywood and Latewood Fibers with Respect to Tree Height and Juvenility. Wood Fiber Sci. 2002, 34, 221–237. [Google Scholar]
- Beck, K.; Cloutier, A.; Salenikovich, A.; Beauregard, R. Effect of Strand Geometry and Wood Species on Strandboard Mechanical Properties. Wood Fiber Sci. 2009, 41, 267–278. [Google Scholar]
- Zhuang, B.; Cloutier, A.; Koubaa, A. Physical and Mechanical Properties of Oriented Strand Board Made from Eastern Canadian Softwood Species. Forests 2022, 13, 523. [Google Scholar] [CrossRef]
- EN 312; Particleboards. Specifications. European Committee for Standardization: Brussels, Belgium, 2010.
- Frihart, C.R.; Hunt, C.G. Adhesives with Wood Materials: Bond Formation and Performance. In Wood Handbook: Wood as an Engineering Material: Chapter 10; Centennial, Ed.; General technical report FPL; GTR-190; US Dept. of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Volume 190, pp. 10–11. [Google Scholar]
- Funda, T.; Fundova, I.; Gorzsás, A.; Fries, A.; Wu, H.X. Predicting the Chemical Composition of Juvenile and Mature Woods in Scots Pine (Pinus sylvestris L.) Using FTIR Spectroscopy. Wood Sci. Technol. 2020, 54, 289–311. [Google Scholar] [CrossRef]
- Bao, F.C.; Jiang, Z.H.; Jiang, X.M.; Lu, X.X.; Luo, X.Q.; Zhang, S.Y. Differences in Wood Properties between Juvenile Wood and Mature Wood in 10 Species Grown in China. Wood Sci. Technol. 2001, 35, 363–375. [Google Scholar] [CrossRef]
- Yeh, T.-F.; Braun, J.L.; Goldfarb, B.; Chang, H.; Kadla, J.F. Morphological and Chemical Variations between Juvenile Wood, Mature Wood, and Compression Wood of Loblolly Pine (Pinus taeda L.). Holzforschung 2006, 60, 1–8. [Google Scholar] [CrossRef]
- Boquillon, N.; Elbez, G.; SchÖnfeld, U. Properties of Wheat Straw Particleboards Bonded with Different Types of Resin. J. Wood Sci. 2004, 50, 230–235. [Google Scholar] [CrossRef]
- Juliana, A.H.; Tahir, P.M.; Sudin, R.; Ibrahim, N.; Uyup, M.K.A. Properties of Particleboard Made from Kenaf (Hibiscus cannabinus L.) as Function of Particle Geometry. Mater. Des. 2012, 34, 406–411. [Google Scholar] [CrossRef]
- Jelonek, T.; Tomczak, A.; Pazdrowski, W. Wytrzymałość Na Ściskanie Wzdłuż Włókien Drewna Sosny Zwyczajnej (Pinus sylvestris L.) z Drzewostanów Eksponowanych Na Działanie Wiatru. Stud. Mater. Cent. Edukac. Przyr.-Leśnej 2014, 16, 171–180. [Google Scholar]
- Telewski, F.W. Wind and Trees: Wind-Induced Physiological and Developmental Responses in Trees; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Telewski, F.W.; Jaffe, M.J. Thigmomorphogenesis: Anatomical, Morphological and Mechanical Analysis of Genetically Different Sibs of Pinus Taeda in Response to Mechanical Perturbation. Physiol. Plant. 1986, 66, 219–226. [Google Scholar] [CrossRef]
- Brüchert, F.; Gardiner, B. The Effect of Wind Exposure on the Tree Aerial Architecture and Biomechanics of Sitka Spruce (Picea sitchensis, Pinaceae). Am. J. Bot. 2006, 93, 1512–1521. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, A.; Jelonek, T.; Zoń, L. Comparison of Selected Physical Properties of the Juvenile and Mature Wood of Scots Pine (Pinus sylvestris L.) from Mature Stands. Sylwan 2010, 154, 809–817. [Google Scholar]
- Ivković, M.; Gapare, W.J.; Abarquez, A.; Ilic, J.; Powell, M.B.; Wu, H.X. Prediction of Wood Stiffness, Strength, and Shrinkage in Juvenile Wood of Radiata Pine. Wood Sci. Technol. 2009, 43, 237–257. [Google Scholar] [CrossRef]
- Calonego, F.W.; Severo, E.T.D.; Latorraca, J.V.D.F.; Bond, B.H. Physical Properties of Thermally Modified Juvenile and Mature Wood of Hevea Brasiliensis (Euphorbiaceae). Floresta Ambiente 2020, 27, e20170841. [Google Scholar] [CrossRef]
- Roszyk, E. Wilgotnościowe i Ultrastrukturalne Uwarunkowania Parametrów Mechanicznych Drewna Sosny (Pinus sylvestris L.) Rozciąganego Wzdłuż Włókien; Wydawnictwo Uniwersytetu Przyrodniczego: Poznań, Poland, 2016; ISBN 83-7160-844-6. [Google Scholar]
- Lachowicz, H.; Wróblewska, H.; Wojtan, R.; Sajdak, M. The Effect of Tree Age on the Chemical Composition of the Wood of Silver Birch (Betula pendula Roth.) in Poland. Wood Sci. Technol. 2019, 53, 1135–1155. [Google Scholar] [CrossRef]
- Lu, C.; Wu, J.; Jiang, Q.; Liu, Y.; Zhou, L.; You, Y.; Cheng, Y.; Liu, S. Influence of juvenile and mature wood on anatomical and chemical properties of early and late wood from Chinese fir plantation. J. Wood Sci. 2021, 67, 72. [Google Scholar] [CrossRef]
- Nuryawan, A.; Rahmawaty; Tambun, K.D.S.; Risnasari, I.; Masruchin, N. Hydrolysis of Particleboard Bonded with Urea-Formaldehyde Resin for Recycling. Heliyon 2020, 6, e03936. [Google Scholar] [CrossRef] [PubMed]
Species of Wood Particles | Fraction (mm) | Shape Factors of Wood Particles | ||
---|---|---|---|---|
Degree of Slenderness (λs) | Degree of Flatness (ψ) | Width Coefficient (m) | ||
PNE-IP | 1.4 | 12.42 | 1.02 | 12.16 |
2.5 | 12.64 | 1.53 | 8.27 | |
PNE-JW | 1.4 | 17.11 | 2.12 | 8.10 |
2.5 | 20.50 | 2.22 | 9.22 | |
BIR-JW | 1.4 | 16.78 | 2.18 | 7.69 |
2.5 | 18.55 | 2.13 | 8.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czarnecki, R.; Dukarska, D.; Kawalerczyk, J.; Filipski, A. Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production. Materials 2025, 18, 1140. https://doi.org/10.3390/ma18051140
Czarnecki R, Dukarska D, Kawalerczyk J, Filipski A. Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production. Materials. 2025; 18(5):1140. https://doi.org/10.3390/ma18051140
Chicago/Turabian StyleCzarnecki, Rafał, Dorota Dukarska, Jakub Kawalerczyk, and Arkadiusz Filipski. 2025. "Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production" Materials 18, no. 5: 1140. https://doi.org/10.3390/ma18051140
APA StyleCzarnecki, R., Dukarska, D., Kawalerczyk, J., & Filipski, A. (2025). Utilization of Pine and Birch Juvenile Wood for Low-Density Particleboard Production. Materials, 18(5), 1140. https://doi.org/10.3390/ma18051140