Ultralow Temperature Sintering of High-Performance Sm-Doped Pb(Zr,Ti)O3-Based Piezoelectric Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, F.R.; Tang, W.; Wang, Z.L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater. 2016, 28, 4283–4305. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wu, J.; Yu, Y.; Chu, Z.; Shi, H.; Dong, S. Giant Piezoelectric Coefficients in Relaxor Piezoelectric Ceramic PNN-PZT for Vibration Energy Harvesting. Adv. Funct. Mater. 2018, 28, 1706895. [Google Scholar] [CrossRef]
- Gu, W.; Zhao, B.; Yang, B.; Cai, Z.; Shang, X.; Zhou, T.; Guo, J. Achieving Superior Electrical Properties of PZT-PNN Piezoelectric Ceramics through Low-Temperature Sintering with PbO-CuO Eutectic Additives. J. Eur. Ceram. Soc. 2022, 42, 3831–3840. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Liu, Y.; Wang, M.; Qiao, L.; Gao, X.; Chang, Y.; Du, H.; Xu, Z.; Zhang, S.; et al. Textured Ferroelectric Ceramics with High Electromechanical Coupling Factors Over a Broad Temperature Range. Nat. Commun. 2021, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Abazari, M.; Safari, A. Effects of Doping On Ferroelectric Properties and Leakage Current Behavior of KNN-LT-LS Thin Films On SrTiO3 Substrate. J. Appl. Phys. 2009, 105, 094101. [Google Scholar] [CrossRef]
- Kizaki, Y.; Noguchi, Y.; Miyayama, M. Defect Control for Low Leakage Current in K0.5Na0.5NbO3 Single Crystals. Appl. Phys. Lett. 2006, 89, 142910. [Google Scholar] [CrossRef]
- Kour, P.; Pradhan, S.K.; Kumar, P.; Sinha, S.K.; Kar, M. Enhanced Ferroelectric and Piezoelectric Properties in La-Modified PZT Ceramics. Appl. Phys. A 2016, 122, 591. [Google Scholar] [CrossRef]
- Liu, C.; Du, Q.; Wu, J.; Zhang, G.; Shi, Y. Novel 3D Printed PZT-Based Piezoceramics for Piezoelectric Energy Harvesting Via Digital Light Processing. Chem. Eng. J. 2024, 492, 152004. [Google Scholar] [CrossRef]
- Shannigrahi, S.R.; Tay, F.E.H.; Yao, K.; Choudhary, R.N.P. WCA Effect of Rare Earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) Ion Substitutions on the Microstructural and Electrical Properties of Sol-Gel Grown PZT Ceramics. J. Eur. Ceram. Soc. 2004, 24, 163–170. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Yoon, C.; Kim, H.; Lee, K. Low-Temperature Sintering of MnO2-Doped PZT-PZN Piezoelectric Ceramics. J. Electroceram. 2007, 18, 311–315. [Google Scholar] [CrossRef]
- Li, F.; Lin, D.; Chen, Z.; Cheng, Z.; Wang, J.; Li, C.; Xu, Z.; Huang, Q.; Liao, X.; Chen, L.; et al. Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design. Nat. Mater. 2018, 17, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, S.; Gong, Y.; Meng, D.; Wang, J.; Jing, Q. Effects of Er3+–Doping On Dielectric and Piezoelectric Properties of 0.5Ba0.9Ca0.1TiO3–0.5BaTi0.88Zr0.12O3–0.12%La–XEr Lead–Free Ceramics. J. Alloy Compd. 2017, 692, 797–804. [Google Scholar] [CrossRef]
- Panigrahi, S.C.; Das, P.R.; Choudhary, R.N.P. Ferroelectric Studies for Soft Gd-Modified PZT Ceramics. Phase Transit. 2018, 91, 703–714. [Google Scholar] [CrossRef]
- Ye, J.; Ding, G.; Wu, X.; Zhou, M.; Wang, J.; Chen, Y.; Yu, Y. Development and Performance Research of PSN-PZT Piezoelectric Ceramics Based on Road Vibration Energy Harvesting Technology. Mater. Today Commun. 2023, 34, 105135. [Google Scholar] [CrossRef]
- Ying, H.; Ding, G.; Zhao, J.; Wang, J.; Liu, Z.; Zhou, M.; Ye, J. Properties of PSN-PZT Piezoelectric Ceramic Powder Prepared by Fast Solid-Phase Reaction Method. Mater. Today Commun. 2023, 35, 106086. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Yang, L.; Liu, S.; Xiao, J.; Li, X.; Wang, X.A.; Luo, H. Design and Comparison of PMN-PT Single Crystals and PZT Ceramics Based Medical Phased Array Ultrasonic Transducer. Sens. Actuators A Phys. 2018, 283, 273–281. [Google Scholar] [CrossRef]
- Kour, P.; Pradhan, S.K.; Kumar, P.; Sinha, S.K.; Kar, M. Effect of Nd Doping On Dielectric and Impedance Properties of PZT Nanoceramics. J. Electron. Mater. 2018, 47, 2861–2870. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Li, B.S.; Li, G.R.; Zhang, W.Z.; Yin, Q.R. Microstructure and Piezoelectric Properties of PMS–PZT Ceramics. Mater. Sci. Eng. B 2005, 117, 216–220. [Google Scholar] [CrossRef]
- Seshadri, S.B.; Nolan, M.M.; Tutuncu, G.; Forrester, J.S.; Sapper, E.; Esteves, G.; Granzow, T.; Thomas, P.A.; Nino, J.C.; Rojac, T.; et al. Unexpectedly High Piezoelectricity of Sm-Doped Lead Zirconate Titanate in the Curie Point Region. Sci. Rep. 2018, 8, 4120. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, F.; Xia, F.; Gao, X.; Wang, P.; Hao, H.; Sun, H.; Liu, H.; Zhang, S. High-Performance Sm-Doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-Based Piezoceramics. ACS Appl. Mater. Interfaces 2019, 11, 43359–43367. [Google Scholar] [CrossRef]
- Hu, X.; Cao, T.; Wang, B.; Wen, Z.; Yan, K.; Wu, D. A Low-Cost Multilayer Piezoelectric Actuator for Ultrasonic Motor Stator Driving Fabricated by a Low-Temperature Co-Fired Ceramic Process. Ceram. Int. 2023, 49, 6119–6124. [Google Scholar] [CrossRef]
- Ghasemifard, M.; Hosseini, S.M.; Khorsand Zak, A.; Khorrami, G.H. Microstructural and Optical Characterization of PZT Nanopowder Prepared at Low Temperature. Physica. E Low-Dimens. Syst. Nanostructures 2009, 41, 418–422. [Google Scholar] [CrossRef]
- Thomazini, D.; Gelfuso, M.V.; Eiras, J.A. Microwave Assisted Hydrothermal Synthesis of Bi4Ti3O12 Nanopowders From Oxide as Raw Materials. Powder Technol. 2012, 222, 139–142. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, H.; Shi, F.; Wang, J. Effect of Polyethylene Glycol on BaTiO3 Nanoparticles Prepared by Hydrothermal Preparation. IET Nanodielectr. 2020, 3, 69–73. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Wang, X. Low-Temperature Firing and Microwave Dielectric Properties of MgNb2-XVx/2O6-1.25X Ceramics. Ceram. Int. 2022, 48, 199–204. [Google Scholar] [CrossRef]
- Rahsepar, H.; Hayati, R.; Javadpour, S. Evaluation of the Dielectric, and Piezoelectric Properties and Optimizing the Figure of Merit of the 0–3 KNN-0.8ZnO/PVDF-HFP Piezoelectric Composite by the Taguchi Method. J. Alloy Compd. 2024, 1006, 176373. [Google Scholar] [CrossRef]
- Vakifahmetoglu, C.; Karacasulu, L. Cold Sintering of Ceramics and Glasses: A Review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100807. [Google Scholar] [CrossRef]
- Guerra, J.D.S.; Hathenher, C.R.; Lourenço, S.A.; Dantas, N.O. Investigation of the Physical Properties of New PZT Modified Tellurium Oxide (TeO2–B2O3–PbO2: TBP) Glasses. J. Non-Cryst. Solids 2010, 356, 2350–2354. [Google Scholar] [CrossRef]
- Saegusa, K. Preparation by a Sol-Gel Process and Dielectric Properties of Lead Zirconate Titanate Glass-Ceramic Thin Films. Jpn. J. Appl. Phys. 1997, 36, 3602–3608. [Google Scholar] [CrossRef]
- Kim, B.S.; Ji, J.; Koh, J. Improved Strain and Transduction Values of Low-Temperature Sintered CuO-Doped PZT-PZNN Soft Piezoelectric Materials for Energy Harvester Applications. Ceram. Int. 2021, 47, 6683–6690. [Google Scholar] [CrossRef]
- Li, S.; Fu, J.; Zuo, R. Middle-Low Temperature Sintering and Piezoelectric Properties of CuO and Bi2O3 Doped PMS-PZT Based Ceramics for Ultrasonic Motors. Ceram. Int. 2021, 47, 20117–20125. [Google Scholar] [CrossRef]
- Mao, W.; Xu, Q.; Huang, D.; Sun, H.; Zhang, F.; Xie, X. Low-Temperature Sintering Properties of Bi2O3 Doped PZT-5H Piezoelectric Ceramics. J. Electron. Mater. 2023, 52, 3334–3342. [Google Scholar] [CrossRef]
- Sharma, G.N.; Dutta, S.; Singh, S.K.; Chatterjee, R. Growth and Optical Properties of Nano-Textured (110) Pb(Zr0.52Ti0.48)O3/(001) ZnO Hetero-Structure On Oxidized Silicon Substrate. J. Mater. Sci. Mater. Electron. 2017, 28, 5058–5062. [Google Scholar] [CrossRef]
- Zhang, J. Dielectric, Ferroelectric and Piezoelectric Properties of PZT Ceramics by ZnO Doping. Integr. Ferroelectr. 2019, 199, 105–111. [Google Scholar] [CrossRef]
- Shi, J.; Guo, Y.; Wang, S.; Yu, X.; Jiang, Q.; Xu, W.; Yan, Y.; Chen, Y.; Zhang, H.; Wang, B. An Optimisation Method for Planning and Operating Nearshore Island Power and Natural Gas Energy Systems. Energy 2024, 308, 132797. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Bian, J.J. Effects of Li2CO3–CuO Addition On the Sintering Behavior, Dielectric and Piezoelectric Properties of PZT Ceramics. J. Mater. Sci. Mater. Electron. 2023, 34, 1202. [Google Scholar] [CrossRef]
- Nan, B.; Paver, T.; Vigay, B.; Tim, B.; Li, L.; Fan, P. Journal Effect of lithium carbonate on the sintering, microstructure, and functional properties of sol–gel-derived Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics. J. Mater. Res. 2021, 36, 1105–1113. [Google Scholar] [CrossRef]
- Dai, L.; Gio, P. Effect of Li2CO3 Addition on the Sintering Behavior and Physical Properties of PZT-PZN-Pmnn Ceramics. Mater. Sci. Appl. 2013, 2, 89–93. [Google Scholar]
- Lin, Z.; Zhu, Z.; Yao, Z.; Zhang, H.; Hao, H.; Cao, M.; Liu, H. Piezoelectric Response and Cycling Fatigue Resistance of Low-Temperature Sintered PZT-Based Ceramics. Materials 2023, 16, 1679. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Yao, Z.; Lai, D.; Guo, Q.; Pan, W.; Hao, H.; Cao, M.; Liu, H. Unexpectedly High Piezoelectric Response in Sm-Doped PZT Ceramics Beyond the Morphotropic Phase Boundary Region. J. Alloy Compd. 2020, 836, 155474. [Google Scholar] [CrossRef]
- Lu, C.; Lin, J. WCA Interaction Between Lead Iron Niobate/Tungstate Ceramics and Silver/Palladium Metals. Ceram. Int. 1997, 23, 223–228. [Google Scholar] [CrossRef]
- Huang, C.; Cai, K.; Wang, Y.; Bai, Y.; Guo, D. Revealing the Real High Temperature Performance and Depolarization Characteristics of Piezoelectric Ceramics by Combined in Situ Techniques. J. Mater. Chem. C Mater. Opt. Electron. Devices 2018, 6, 1433–1444. [Google Scholar] [CrossRef]
- Naeem, F.; Saleem, M.; Jabbar, H.; Tanvir, G.; Asif, F.; Baluch, A.H.; Irfan, M.; Ghaffar, A.; Maqbool, A.; Rafiq, T. Enhanced Ferroelectric and Dielectric Properties of Niobium-Doped Lead-Free Piezoceramics. Materials 2023, 16, 477. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.M.; Yang, W. Defect agglomeration in ferroelectric ceramics under cyclic electric field. Sci. China 2008, 51, 1296–1305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Yuan, Z.; Yao, Z.; Chen, J.; Hao, H.; Cao, M.; Liu, H. Ultralow Temperature Sintering of High-Performance Sm-Doped Pb(Zr,Ti)O3-Based Piezoelectric Ceramics. Materials 2025, 18, 512. https://doi.org/10.3390/ma18030512
Ma Z, Yuan Z, Yao Z, Chen J, Hao H, Cao M, Liu H. Ultralow Temperature Sintering of High-Performance Sm-Doped Pb(Zr,Ti)O3-Based Piezoelectric Ceramics. Materials. 2025; 18(3):512. https://doi.org/10.3390/ma18030512
Chicago/Turabian StyleMa, Zechi, Zixuan Yuan, Zhonghua Yao, Jiangxue Chen, Hua Hao, Minghe Cao, and Hanxing Liu. 2025. "Ultralow Temperature Sintering of High-Performance Sm-Doped Pb(Zr,Ti)O3-Based Piezoelectric Ceramics" Materials 18, no. 3: 512. https://doi.org/10.3390/ma18030512
APA StyleMa, Z., Yuan, Z., Yao, Z., Chen, J., Hao, H., Cao, M., & Liu, H. (2025). Ultralow Temperature Sintering of High-Performance Sm-Doped Pb(Zr,Ti)O3-Based Piezoelectric Ceramics. Materials, 18(3), 512. https://doi.org/10.3390/ma18030512