Electronic Structure and Lattice Engineering of Cobalt Doping FeS2@C for Superior Electrosorption of Ytterbium Ions
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of MIL-101(Fe) and MIL-101(Co, Fe)
2.3. Synthesis of Co-FeS2@C and FeS2@C
2.4. Characterizations
2.5. Electrochemical Measurements
2.6. CDI Experiments
3. Results and Discussion
3.1. Characterizations
3.2. Electrochemical Measurements of Electrode Materials
3.3. CDI of Rare Earth Elements
3.4. CDI Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Chen, J.; Zhang, H.; Gong, S.; Xiao, Y.; Huang, L. Reducing rare earth loss by adding acetic acid in the aluminum removal process of rare earth leaching solution. J. Clean. Prod. 2024, 435, 140537. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, Z.; Yan, H.; Wang, H.; Chen, Z. Probing the geochemical characteristics of rare earth elements in the weathering profile of yttrium-rich heavy rare earth mine. Sci. Total Environ. 2024, 931, 172906. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, L.; Li, Z.; Zhang, H.; Wei, W.; Huang, X.; Feng, Z. Selective separation of rare earths and aluminum from low-concentration rare earth solution via centrifugal extraction. Sep. Purif. Technol. 2024, 351, 127933. [Google Scholar] [CrossRef]
- Lan, Q.; Zhang, X.; Niu, F.; Liu, D.; Shen, L.; Yang, Y. Recovery of rare earth elements and thorium from acid leaching residue of ionic rare earth concentrates. J. Rare Earths 2025, 43, 794–804. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Li, L.; Yang, Y.M. Readsorption of rare earth elements during leaching process of ion-adsorption-type rare earth ore. Rare Met. 2023, 42, 2113–2120. [Google Scholar] [CrossRef]
- Kegl, T.; Košak, A.; Lobnik, A.; Novak, Z.; Kralj, A.K.; Ban, I. Adsorption of rare earth metals from wastewater by nanomaterials: A review. J. Hazard. Mater. 2020, 386, 121632. [Google Scholar] [CrossRef]
- Wang, L.; Dykstra, J.E.; Lin, S. Energy Efficiency of Capacitive Deionization. Environ. Sci. Technol. 2019, 53, 3366–3378. [Google Scholar] [CrossRef]
- Du, J.; Xing, W.; Yu, J.; Feng, J.; Tang, L.; Tang, W. Synergistic effect of intercalation and EDLC electrosorption of 2D/3D interconnected architectures to boost capacitive deionization for water desalination via MoSe2/mesoporous carbon hollow spheres. Water Res. 2023, 235, 119831. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Guo, W.; Ding, Y. Less-precious nitrogen-rich covalent organic frameworks capable of effective rare earth recovery from water. J. Mol. Liq. 2023, 372, 121229. [Google Scholar] [CrossRef]
- Hossain, M.S.; Shenashen, M.A.; Awual, M.E.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Kubra, K.T.; Salman, M.S.; Sheikh, M.C.; Hasan, M.N.; et al. Benign separation, adsorption, and recovery of rare-earth Yb(III) ions with specific ligand-based composite adsorbent. Process Saf. Environ. Prot. 2024, 185, 367–374. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, D.; Lu, S.; Wang, H.; Xiang, Y.; Aurbach, D.; Avraham, E.; Cohen, I. Advances and perspectives in integrated membrane capacitive deionization for water desalination. Desalination 2022, 542, 116043. [Google Scholar] [CrossRef]
- Rhee, H.; Kwak, R. Induced-charge membrane capacitive deionization enables high-efficient desalination with polarized porous electrodes. Water Res. 2023, 244, 120436. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Cai, N.; Xue, J. Enhanced adsorption performance of polypyrrole composite electrode with ionic liquid doped for low concentration heavy metals in CDI. J. Environ. Chem. Eng. 2022, 10, 109028. [Google Scholar] [CrossRef]
- Sufiani, O.; Tanaka, H.; Teshima, K.; Machunda, R.L.; Jande, Y.A.C. Research progress of sodium super ionic conductor electrode materials for capacitive deionization. Sep. Purif. Technol. 2024, 340, 126830. [Google Scholar] [CrossRef]
- Tauk, M.; Folaranmi, G.; Cretin, M.; Bechelany, M.; Sistat, P.; Zhang, C.; Zaviska, F. Recent advances in capacitive deionization: A comprehensive review on electrode materials. J. Environ. Chem. Eng. 2023, 11, 111368. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, J.; Gao, H.-w.; Yu, F.; Ma, J. Recent advances on capacitive deionization for defluorination: From electrode materials to engineering application. Chem. Eng. J. 2024, 480, 147986. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, M.; Liang, W.; Ao, T.; Chen, W. One-dimensional electrospinning nanomaterials toward capacitive deionization: Fundamentals, development, and perspectives. Desalination 2023, 567, 117010. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, H.; Li, C.; Liu, W.; Peng, W.; Liu, J. Emerging MXene-based electrode materials for efficient capacitive deionization: A comprehensive review. Desalination 2024, 586, 117837. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Cai, Y.; Fang, R.; Huang, S.; Zhao, Y.; Zhang, S. Heterostructure of NiCoAl-layered double hydroxide nanosheet arrays assembled on MXene coupled with CNT as conductive bridge for enhanced capacitive deionization. Chem. Eng. J. 2023, 478, 147270. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Xu, X.; Eid, K.; Abdullah, A.M.; Pan, L.; Yamauchi, Y. Recent Advances in Faradic Electrochemical Deionization: System Architectures versus Electrode Materials. ACS Nano 2021, 15, 13924–13942. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qin, J.; Guo, Z.; Hu, Y.; Zhang, X. Zn-based metal organic framework derivative with uniform metal sites and hierarchical pores for efficient adsorption of formaldehyde. Chin. Chem. Lett. 2021, 32, 1819–1822. [Google Scholar] [CrossRef]
- Kumar, S.; Aldaqqa, N.M.; Alhseinat, E.; Shetty, D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew. Chem. Int. Ed. 2023, 62, e202302180. [Google Scholar] [CrossRef]
- Ding, J.; Tang, Y.; Zheng, S.; Zhang, S.; Xue, H.; Kong, Q.; Pang, H. The synthesis of MOF derived carbon and its application in water treatment. Nano Res. 2022, 15, 6793–6818. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, G.; Wan, Y.; Liu, X.; Chu, K. Ampere-Level Nitrate Electroreduction to Ammonia over Monodispersed Bi-Doped FeS2. ACS Nano 2023, 17, 21328–21336. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Q.; Zhang, Y.; Han, N.; Liu, H.; Zhang, X. Multifunctional heterostructure CoS2/FeS2 catalysts for enhancing high-performance lithium–sulfurized polyacrylonitrile batteries through intrinsic electric fields. Chin. Chem. Lett. 2025, 111084. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Zhu, D.; Li, Z.; Sun, F.; Zhu, W.; Chen, Y.; Zhang, J.; Ren, L.; Zhang, S.; et al. Synchrotron Radiation Spectroscopic Studies of Mg2+ Storage Mechanisms in High-Performance Rechargeable Magnesium Batteries with Co-Doped FeS2 Cathodes. Adv. Energy Mater. 2022, 12, 2201608. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Fu, Z.; Zhang, H.; Wang, G.; Zhou, H. Highly selective capacitive deionization of copper ions in FeS2@N, S co-doped carbon electrode from wastewater. Sep. Purif. Technol. 2021, 262, 118336. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, H.; Liu, Y.; Li, D.; He, H.; Huang, X.; Shen, W.; Yan, Z.; Dang, Z.; Zhu, R. Internal electric field induced photocarriers separation of nickel-doped pyrite/pyrite homojunction with rich sulfur vacancies for superior Cr(VI) reduction. J. Colloid Interface Sci. 2023, 629 Pt B, 847–858. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Q.; Zhang, D. Defect engineering of P doped Fe7S8 porous nanoparticles for high-performance asymmetric supercapacitor and oxygen evolution electrocatalyst. J. Colloid Interface Sci. 2022, 617, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Sun, J.; Li, D.; Yu, F.; Zhu, Y.; Yang, Y.; Wang, J.; Zhou, W.; Tang, D.; Chen, S.; et al. Highly Robust Non-Noble Alkaline Hydrogen-Evolving Electrocatalyst from Se-Doped Molybdenum Disulfide Particles on Interwoven CoSe2 Nanowire Arrays. Small 2020, 16, e1906629. [Google Scholar] [CrossRef]
- Chen, S.; Liang, W.; Wang, X.; Zhao, Y.; Wang, S.; Li, Z.; Wang, S.; Hou, L.; Jiang, Y.; Gao, F. P-doped MOF-derived CoNi bimetallic sulfide electrocatalyst for highly-efficiency overall water splitting. J. Alloys Compd. 2023, 931, 167575. [Google Scholar] [CrossRef]
- Lin, J.; Wang, P.; Wang, H.; Li, C.; Si, X.; Qi, J.; Cao, J.; Zhong, Z.; Fei, W.; Feng, J. Defect-Rich Heterogeneous MoS2/NiS2 Nanosheets Electrocatalysts for Efficient Overall Water Splitting. Adv. Sci. 2019, 6, 1900246. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, S.; Lin, X.; Liu, C.; Hu, S.; Huang, Q. N, P-doped multiphase transition metal sulfides are used for efficient electrocatalytic oxygen evolution reaction. Appl. Surf. Sci. 2022, 584, 152546. [Google Scholar] [CrossRef]
- Wu, Y.; Du, X.; Zhang, X. P doping transition metal sulfides as bifunctional electrocatalyst for overall seawater splitting. Int. J. Hydrogen Energy 2025, 103, 174–182. [Google Scholar] [CrossRef]
- Yang, D.; Guo, W.; Guo, F.; Zhu, J.; Wang, G.; Wang, H.; Yuan, G.; Ma, S.; Wang, B. Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors. J. Energy Chem. 2024, 90, 652–664. [Google Scholar] [CrossRef]
- Li, Y.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y.Q.; Gao, D.; Cheng, F.; Xi, P. FeS(2)/CoS(2) Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2018, 14, e1801070. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.D.; Xue, H.T.; Hu, Y.X.; Zhao, Q.S.; Tang, F.-L. Tuning of d-p band centers with M-A (M=Co, Ni, Cu; A=N, P, O, Se) co-doped FeS2 for enhanced Li-S redox chemistry. J. Energy Storage 2024, 77, 109881. [Google Scholar] [CrossRef]
- Men, X.; Deng, T.; Chen, L.; Che, J.; Wang, J.; Wang, J. Suppressing Surface Oxidation of Pyrite FeS2 by Cobalt Doping in Lithium Sulfur Batteries. Small 2024, 20, e2403576. [Google Scholar] [CrossRef]
- Pan, Y.; Mu, Z.; Qing, M.; Wu, Y.; Deng, M.; Bai, L. Enzyme activity-enhanced MIL101(Fe) loaded PdSn Nanoenzymes enable ultrasensitive detection of oxytetracycline in foods. Food Chem. 2025, 495, 146496. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, C.; Ji, Y.; Bi, K.; Tian, H.; Wang, B. Engineering linker-defects of MIL-101 series metal organic frameworks for boosted Yb(III) adsorption. Sep. Purif. Technol. 2024, 330, 125293. [Google Scholar] [CrossRef]
- Xiong, P.; Zhang, H.; Li, G.; Liao, C.; Jiang, G. Adsorption removal of ibuprofen and naproxen from aqueous solution with Cu-doped Mil-101(Fe). Sci. Total Environ. 2021, 797, 149179. [Google Scholar] [CrossRef]
- Feng, H.; Xu, Q.; Lv, T.; Liu, H. Bimetallic NH2-MIL-101(Fe, Co) as highly efficient photocatalyst for nitrogen fixation. Appl. Catal. B Environ. 2024, 351, 123949. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Y.; Wan, J.; Han, J.; Ma, Y.; Wang, S. Enhancing water stability of MIL-101(Cr) by doping Ni(II). Appl. Surf. Sci. 2020, 525, 146511. [Google Scholar] [CrossRef]
- Kim, M.; Xu, X.; Xin, R.; Earnshaw, J.; Ashok, A.; Kim, J.; Park, T.; Nanjundan, A.K.; El-Said, W.A.; Yi, J.W.; et al. KOH-Activated Hollow ZIF-8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS Appl. Mater. Interfaces 2021, 13, 52034–52043. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liu, J.; Zha, X.; Sun, G.; Wang, Y. Triple microenvironment modulation of zeolite imidazolate framework (ZIF) nanocages for boosting dopamine electrocatalysis. J. Colloid Interface Sci. 2024, 654, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; He, W.; Zhang, Q.; Shapour, H.; Bakhtari, M.F. Preparation of a GO/MIL-101(Fe) Composite for the Removal of Methyl Orange from Aqueous Solution. ACS Omega 2021, 6, 4597–4608. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Jin, W.; Hu, Q.; Zhao, Y. Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures. J. Colloid Interface Sci. 2019, 554, 692–704. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C. Environment-friendly synthesis of carbon-encapsulated SnO2 core-shell nanocubes as high-performance anode materials for lithium ion batteries. Mater. Today Energy 2020, 16, 100406. [Google Scholar] [CrossRef]
- Xie, F.; Xu, C.; Liang, Y.; Tian, Z.; Ma, C.; Xu, S.; Li, Z.; Rehman, Z.U.; Yao, S. Cubic FeS2 enabling robust polysulfide adsorption and catalysis in lithium/sulfur batteries. J. Energy Storage 2023, 72, 108712. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Bi, K.; Tian, F.; Wang, C. Self-assembly of 2D Fe-doped NiTe/NiTe2 heterostructure for boosted oxygen evolution. Mol. Catal. 2023, 550, 113586. [Google Scholar] [CrossRef]
- Yue, L.; Wang, Z.; Wang, D.; Song, W.; Wu, Z.; Zhao, W.; Zhang, L.; Luo, Y.; Sun, S.; Zheng, D.; et al. Aliovalent doping engineering enables multiple modulations of FeS2anodes to achieve fast and durable sodium storage. J. Mater. Chem. A 2022, 10, 21149–21160. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Ding, Y.; Wang, C. Tuning the d-band center enables nickel-iron phosphide nanoprisms as efficient electrocatalyst towards oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 17388–17397. [Google Scholar] [CrossRef]
- Shi, Y.; Mei, P.; He, T.; Deng, C.; Ba, H.; Hu, J.; Huang, S. N, S, Se-Codoped dual carbon encapsulation and Se substitution in pyrite-type FeS2 for high-rate and long-life sodium-ion batteries. Chem. Eng. J. 2024, 497, 155682. [Google Scholar] [CrossRef]
- Cao, D.; Ye, K.; Moses, O.A.; Xu, W.; Liu, D.; Song, P.; Wu, C.; Wang, C.; Ding, S.; Chen, S.; et al. Engineering the In-Plane Structure of Metallic Phase Molybdenum Disulfide via Co and O Dopants toward Efficient Alkaline Hydrogen Evolution. ACS Nano 2019, 13, 11733–11740. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wang, M.; Liu, Y.; Cui, H. High rate performance and stabilized cycle life of Co2+-doped nickel sulfide nanosheets synthesized by a scalable method of solid-state reaction. Chem. Eng. J. 2019, 366, 33–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C. Yolk-shell nanostructural Ni2P/C composites as the high performance electrocatalysts toward urea oxidation. Chin. Chem. Lett. 2021, 32, 2222–2228. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Lv, L.; Wang, A.; Zhang, B.; Ding, Y.; Wang, C. Electronic engineering of CoSe/FeSe2 hollow nanospheres for efficient water oxidation. Nanoscale 2020, 12, 10196–10204. [Google Scholar] [CrossRef]
- Gang, H.; Deng, H.; Yan, L.; Wu, B.; Alhassan, S.I.; Cao, Y.; Wei, D.; Wang, H. Surface redox pseudocapacitance boosting Fe/Fe3C nanoparticles-encapsulated N-doped graphene-like carbon for high-performance capacitive deionization. J. Colloid Interface Sci. 2023, 638, 252–262. [Google Scholar] [CrossRef]
- Gao, J.; Wang, G.; Wang, W.; Yu, L.; Peng, B.; El-Harairy, A.; Li, J.; Zhang, G. Engineering Electronic Transfer Dynamics and Ion Adsorption Capability in Dual-Doped Carbon for High-Energy Potassium Ion Hybrid Capacitors. ACS Nano 2022, 16, 6255–6265. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Yang, X.; Guo, X.; Yao, Y.; Xiao, C.; Qi, J.; Zhou, Y.; Yang, Y.; Zhu, Z.; et al. Mesoporous dopamine-modified leaf-like zeolitic imidazolate frameworks derived carbon for efficient capacitive deionization. J. Colloid Interface Sci. 2024, 654, 559–567. [Google Scholar] [CrossRef]
- Zhang, P.; Qiu, X.; Lin, P.; Li, C.; Xu, Z.; Liu, S.; Li, F.; Fang, D.; Li, K.; Wang, H. The Faradaic-Induced hybrid capacitive engine enables high-performance selective defluorination via capacitive deionization. Chem. Eng. J. 2024, 497, 154761. [Google Scholar] [CrossRef]
- Qian, H.; Yang, J.; Hu, B.; Zhang, B.; Wang, Y.; Liu, J. Partially reduced CeO2/C@CNT with high oxygen vacancy boosting phosphate adsorption as CDI anode. Sep. Purif. Technol. 2023, 306, 122557. [Google Scholar] [CrossRef]
- Zhang, B.; Boretti, A.; Castelletto, S. Mxene pseudocapacitive electrode material for capacitive deionization. Chem. Eng. J. 2022, 435, 134959. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, C.; Bi, K.; Tian, H.; Zhang, Y. Fabrication of Fe-CoS2@N-doped C electrode for highly efficient and durable electrosorption of Yb(III) from aqueous solutions. Sep. Purif. Technol. 2024, 341, 126912. [Google Scholar] [CrossRef]
- Amarray, A.; El Ghachtouli, S.; Samih, Y.; Dahbi, M.; Azzi, M. Enhancement of Cd(II) electrosorption using electrosorption process with manganese oxide nanomaterial electrodeposited. Desalination 2022, 521, 115307. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Zhu, Z.; Wang, N.; Wang, C.; Nie, G. A two-pronged strategy to boost the capacitive deionization performance of nitrogen-doped porous carbon nanofiber membranes. Desalination 2025, 594, 118293. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, P.; Wang, Y.; He, M.; Zhang, W.; Xu, Z.; Li, K. Uniformly Dispersed Fe–N Active Centers on Hierarchical Carbon Electrode for High-Performance Capacitive Deionization: Plentiful Adsorption Sites and Conductive Electron Transfer. ACS Sustain. Chem. Eng. 2023, 11, 8847–8857. [Google Scholar] [CrossRef]
- Hu, Q.-H.; Tang, D.-Y.; Xiang, Y.-L.; Chen, X.; Lin, J.; Zhou, Q.-H. Magnetic ion-imprinted polyacrylonitrile-chitosan electro-spun nanofibrous membrane as recyclable adsorbent with selective heavy metal removal and antibacterial fouling in water treatment. Int. J. Biol. Macromol. 2023, 241, 124620. [Google Scholar] [CrossRef]
- Wang, N.; Wang, M.; Quan, H.; Wang, S.; Chen, D. Waste Camellia oleifera shell-derived hierarchically porous carbon modified by Fe3O4 nanoparticles for capacitive removal of heavy metal ions. Sep. Purif. Technol. 2024, 329, 125184. [Google Scholar] [CrossRef]
- Xiong, Y.; Yang, X.; Liu, Y.; Chen, X.; Wang, G.; Lu, B.; Lin, G.; Huang, B. Fabrication of phosphorus doping porous carbon derived from bagasse for highly-efficient removal of La3+ ions via capacitive deionization. Electrochim. Acta 2022, 404, 139735. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, S.; Xiang, H.; Gao, T.; Wang, D.; Wei, D.; Sillanpää, M.; Ke, Y.; Tang, C.-J. Selectively capacitive recovery of rare earth elements from aqueous solution onto Lewis base sites of pyrrolic-N doped activated carbon electrodes. Carbon 2022, 197, 282–291. [Google Scholar] [CrossRef]
- Lin, G.; Wang, G.; Xiong, Y.; Li, S.; Jiang, R.; Lu, B.; Huang, B.; Xie, H. High-performance electrosorption of lanthanum ion by Mn3O4-loaded phosphorus-doped porous carbon electrodes via capacitive deionization. J. Environ. Manag. 2024, 358, 120856. [Google Scholar] [CrossRef] [PubMed]
- Engmann, E.; Diaz, L.A.; Lister, T.E.; Atifi, A.; Palasyuk, O.; Zhao, H. Selective pseudocapacitive immobilization of REE elements on carbon based electrodes. Electrochim. Acta 2024, 478, 143860. [Google Scholar] [CrossRef]
- Vapnik, H.; Elbert, J.; Su, X. Redox-copolymers for the recovery of rare earth elements by electrochemically regenerated ion-exchange. J. Mater. Chem. A 2021, 9, 20068–20077. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, Y.; Sun, C.; Bi, K.; Wang, H.; Ding, Y. Selective electro-capacitive deionization of Yb(III) by nanospherical N-doped carbon supported nickel-iron bimetallic oxide, nitride and phosphide. Desalination 2024, 592, 118104. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, K.; Cheng, T.; Shi, Z.; Huang, W.; Deng, F.; Zhang, Y. Electronic Structure and Lattice Engineering of Cobalt Doping FeS2@C for Superior Electrosorption of Ytterbium Ions. Materials 2025, 18, 4994. https://doi.org/10.3390/ma18214994
Bi K, Cheng T, Shi Z, Huang W, Deng F, Zhang Y. Electronic Structure and Lattice Engineering of Cobalt Doping FeS2@C for Superior Electrosorption of Ytterbium Ions. Materials. 2025; 18(21):4994. https://doi.org/10.3390/ma18214994
Chicago/Turabian StyleBi, Kaicheng, Tiancai Cheng, Zhangjie Shi, Wenyan Huang, Fuli Deng, and Yi Zhang. 2025. "Electronic Structure and Lattice Engineering of Cobalt Doping FeS2@C for Superior Electrosorption of Ytterbium Ions" Materials 18, no. 21: 4994. https://doi.org/10.3390/ma18214994
APA StyleBi, K., Cheng, T., Shi, Z., Huang, W., Deng, F., & Zhang, Y. (2025). Electronic Structure and Lattice Engineering of Cobalt Doping FeS2@C for Superior Electrosorption of Ytterbium Ions. Materials, 18(21), 4994. https://doi.org/10.3390/ma18214994
