Ti-Al-V/Zn-Al-Cu Composite Materials Prepared by Zinc Melt Infiltration Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Vacuum Pump Suction
2.3. Centrifugal Casting
2.4. Microstructure
2.5. Mechanical Properties Testing
3. Results and Discussion
3.1. Infiltration Success Rate
3.2. Microstructure
3.3. Uniaxial Compression Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2024, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Vojtěch, D. Titan. In Kovové Materiály, 1st ed.; VŠCHT: Praha, Czech Republic, 2006; pp. 136–139. [Google Scholar]
- Torres, Y.; Trueba, P.; Pavon Palacio, J.; Montealegre-Meléndez, I.; Rodriguez-Ortiz, J.A. Designing, Processing and Characterisation of Titanium Cylinders with Graded Porosity: An Alternative to Stress-Shielding Solutions. Mater. Des. 2014, 63, 316–324. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Peng, S.; Ye, B.; Lin, W.; Hu, J. Effect of Zinc Ions on Improving Implant Fixation in Osteoporotic Bone. Connect. Tissue Res. 2013, 54, 290–296. [Google Scholar] [CrossRef]
- Sreya, P.V.; Mathew, A.M.; Gowdhami, B.; Vignesh, K.; Swathi, C.M.; Venkatesan, K.; Kadalmani, B.; Pattanayak, D.K. Biomimetic Surface Functionalization of Ti Metal Incorporated with Ca-Zn and Evaluation of In-Vitro Biological Properties. Surf. Interfaces 2023, 42, 103425. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Li, G.; Yang, H.; Zheng, Y.; Chen, X.-H.; Yang, J.-A.; Zhu, D.; Ruan, L.; Takashima, K. Challenges in the Use of Zinc and Its Alloys as Biodegradable Metals: Perspective from Biomechanical Compatibility. Acta Biomater. 2019, 97, 23–45. [Google Scholar] [CrossRef]
- Kaur, K.; Gupta, R.; Saraf, S.A.; Saraf, S.K. Zinc: The Metal of Life. Compr. Rev. Food Sci. Food Saf. 2014, 13, 358–376. [Google Scholar] [CrossRef]
- Andreini, C.; Bertini, I. A Bioinformatics View of Zinc Enzymes. J. Inorg. Biochem. 2012, 111, 150–156. [Google Scholar] [CrossRef]
- Deng, Z.; Xu, K.; Tian, Y.; Lou, M.; Xue, R.; Zhang, L.; Liu, L.; Chang, K. Experimental Investigation and Thermodynamic Re-Assessment of the Ti–Zn System and Atomic Mobility of Its Bcc Phase. Calphad 2022, 76, 102392. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, Z.; Li, Z.; Tao, X.; Ouyang, Y.; Du, Y. Investigation on Diffusion Characteristics and Mechanical Properties of Ti–Zn System. Intermetallics 2023, 154, 107794. [Google Scholar] [CrossRef]
- Michna, Š.; Nová, I. Progresivní Technologie Odlévání. In Technologie a Zpracování Kovových Materiálů; Adin: Prešov, Slovakia, 2008; pp. 130–174. [Google Scholar]
- Kharat, V.J.; Singh, P.; Sharath Raju, G.; Kumar Yadav, D.; Satyanarayana; Gupta, M.; Arun, V.; Hussein Majeed, A.; Singh, N. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Yuan, L.; Ding, S.; Wen, C. Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review. Bioact. Mater. 2019, 4, 56–70. [Google Scholar] [CrossRef]
- Meng, M.; Wang, J.; Huang, H.; Liu, X.; Zhang, J.; Li, Z. 3D Printing Metal Implants in Orthopedic Surgery: Methods, Applications and Future Prospects. J. Orthop. Transl. 2023, 42, 94–112. [Google Scholar] [CrossRef]
- Wang, S.; Ning, J.; Zhu, L.; Yang, Z.; Yan, W.; Dun, Y.; Xue, P.; Xu, P.; Bose, S.; Bandyopadhyay, A. Role of Porosity Defects in Metal 3D Printing: Formation Mechanisms, Impacts on Properties and Mitigation Strategies. Mater. Today 2022, 59, 133–160. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Chia, H.Y.; Yan, W. Mechanism of Keyhole Pore Formation in Metal Additive Manufacturing. NPJ Comput. Mater. 2022, 8, 22. [Google Scholar] [CrossRef]
- Lv, Y.; Ding, Z.; Xue, J.; Sha, G.; Lu, E.; Wang, L.; Lu, W.; Su, C.; Zhang, L.-C. Deformation Mechanisms in Surface Nano-Crystallization of Low Elastic Modulus Ti6Al4V/Zn Composite during Severe Plastic Deformation. Scr. Mater. 2018, 157, 142–147. [Google Scholar] [CrossRef]
- Lv, Y.; Ding, Z.; Sun, X.; Li, L.; Sha, G.; Liu, R.; Wang, L. Gradient Microstructures and Mechanical Properties of Ti-6Al-4V/Zn Composite Prepared by Friction Stir Processing. Materials 2019, 12, 2795. [Google Scholar] [CrossRef]
- Huang, S.-J.; Li, C.; Feng, J.-H.; Selvaraju, S.; Subramani, M. Mechanical and Corrosion Tests for Magnesium–Zinc/Ti-6Al-4V Composites by Gravity Casting. Materials 2024, 17, 1836. [Google Scholar] [CrossRef]
- Fousová, M.; Vojtěch, D.; Kubásek, J.; Jablonská, E.; Fojt, J. Promising Characteristics of Gradient Porosity Ti-6Al-4V Alloy Prepared by SLM Process for Bone Implant Applications. J. Mech. Behav. Biomed. Mater. 2017, 69, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Nunes, H.; Emadinia, O.; Costa, J.; Madureira, R.; Soares, R.; Silva, J.; Frada, I.; Anjos, V.; Viana, F.; Vieira, M.; et al. Infiltration of Aluminum in 3D-Printed Metallic Inserts. Appl. Res. 2023, 2, e202200062. [Google Scholar] [CrossRef]
- Brice, D.A.; Samimi, P.; Ghamarian, I.; Liu, Y.; Mendoza, M.Y.; Kenney, M.J.; Reidy, R.F.; Garcia-Avila, M.; Collins, P.C. On the Eutectoid Transformation Behavior of the Ti–Zn System and Its Metastable Phases. J. Alloys Compd. 2017, 718, 22–27. [Google Scholar] [CrossRef]
- Vassilev, G.P.; Liu, X.J.; Ishida, K. Reaction Kinetics and Phase Diagram Studies in the Ti–Zn System. J. Alloys Compd. 2004, 375, 162–170. [Google Scholar] [CrossRef]
- Properties: Titanium Alloys—Ti6Al4V Grade 5. AZoM. Available online: https://www.azom.com/properties.aspx?ArticleID=1547 (accessed on 1 June 2024).
- Properties: Zinc and Its Uses. AZoM. Available online: https://www.azom.com/properties.aspx?ArticleID=749 (accessed on 1 June 2024).
Sample Number | Lattice Structure | Solid Back | Method | Notes |
---|---|---|---|---|
1 | B | × | vacuum suction | attached with glue |
2 | B | × | vacuum suction | attached with glue |
3 | C | × | vacuum suction | attached with wire |
4 | A | × | vacuum suction | attached with wire |
5 | B | ✔ | centrifugal casting | horizontal position |
6 | B | ✔ | centrifugal casting | horizontal position |
7 | B | × | centrifugal casting | horizontal position |
8 | B | × | centrifugal casting | vertical position |
9 | B | ✔ | centrifugal casting | vertical position |
Sample | Rp0.2 (MPa) | Rm (MPa) | Elastic Modulus (MPa) |
---|---|---|---|
Ti-6Al-4V (bulk) | 848 | 1080 | [25] |
Zn | 75 | 160 | [26] |
Standard without the back | 75 ± 17 | 123 ± 11 | 27 ± 3 |
Standard with the back | 124 ± 23 | 168 ± 9 | 42 ± 3 |
Sample 7 | 287 ± 23 | 556 ± 38 | 57 ± 2 |
Sample 8 | 421 ± 29 | 669 ± 21 | 49 ± 5 |
Sample 9 | 332 ± 55 | 539 ± 35 | 46 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balejová, V.; Michalcová, A.; Bašistová, M.; Lichý, P.; Vojtěch, D. Ti-Al-V/Zn-Al-Cu Composite Materials Prepared by Zinc Melt Infiltration Technology. Materials 2025, 18, 4690. https://doi.org/10.3390/ma18204690
Balejová V, Michalcová A, Bašistová M, Lichý P, Vojtěch D. Ti-Al-V/Zn-Al-Cu Composite Materials Prepared by Zinc Melt Infiltration Technology. Materials. 2025; 18(20):4690. https://doi.org/10.3390/ma18204690
Chicago/Turabian StyleBalejová, Veronika, Alena Michalcová, Martina Bašistová, Petr Lichý, and Dalibor Vojtěch. 2025. "Ti-Al-V/Zn-Al-Cu Composite Materials Prepared by Zinc Melt Infiltration Technology" Materials 18, no. 20: 4690. https://doi.org/10.3390/ma18204690
APA StyleBalejová, V., Michalcová, A., Bašistová, M., Lichý, P., & Vojtěch, D. (2025). Ti-Al-V/Zn-Al-Cu Composite Materials Prepared by Zinc Melt Infiltration Technology. Materials, 18(20), 4690. https://doi.org/10.3390/ma18204690