Arsenic in Slovakia: Pollution Issues and the Potential of Magnetic Carbon Biomaterials for Wastewater Treatment
Abstract
:1. Introduction
1.1. Review on Arsenic Toxicity, Chemistry, Mineralogy and Industrial Application
1.2. Natural Occurrence in Slovakia
1.3. Anthropogenic Pollution in Slovakia from Ore Mining and Processing
1.4. Arsenic Pollution in Relation to Coal Mining, Fossil Fuel Combustion and Chemical Industry
1.5. Arsenic Removal from Water by Magnetic Carbon Biomaterials
2. Experimental Section
2.1. Preparation and Brief Characterization of the Selected Magnetic Adsorbent (MWchar-Mag)
2.2. Materials and Adsorption Procedure
2.3. Data Analysis from Adsorption Experiments
3. Results
3.1. Characterization of Wastewater
3.2. Arsenic Removal from Model Aqueous Solution
3.3. Adsorption of Arsenic from Real Water (Hauser Adit)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, J.-Y.; Yu, S.-D.; Hong, Y.-S. Environmental Source of Arsenic Exposure. J. Prev. Med. Public Health 2014, 47, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. Geochemical Atlas of Europe—Part 1: Background Information, Methodology and Maps; Salminen, R., Ed.; Geological Survey of Finland: Espoo, Finland, 2005; 526p. [Google Scholar]
- National Research Council (US) Subcommittee on Arsenic in Drinking Water. Chemistry and Analysis of Arsenic Species in Water, Food, Urine, Blood, Hair, and Nails. In Arsenic in Drinking Water; National Academies Press (US): Washington, DC, USA, 1999; Volume 3. Available online: https://www.ncbi.nlm.nih.gov/books/NBK230885/ (accessed on 3 October 2024).
- Vaclavikova, M.; Gallios, G.P.; Hredzak, S.; Jakabsky, S. Removal of arsenic from water streams: An overview of available techniques. Clean Technol. Environ. Policy 2008, 10, 89–95. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Europe, 2nd ed.; European Series, No. 91; WHO Regional Publications: Copenhagen, Denmark, 2000; 288p.
- WHO. Arsenic and Arsenic Compounds (Environmental Health Criteria 224), 2nd ed.; World Health Organization, International Programme on Chemical Safety: Geneva, Switzerland, 2001.
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
- McLennan, S.M.; Taylor, S.R. Earth’s continental crust. In Encyclopedia of Geochemistry; Marshall, C.P., Fairbridge, R.W., Eds.; Kluwer Academic Publishers: Dordrecht, Germany, 1999; pp. 145–150. [Google Scholar]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. (Eds.) Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2015; pp. 1–1110. Available online: http://www.handbookofmineralogy.org/ (accessed on 3 October 2024).
- Barthelmy, D. Mineralogy Database 1997–2014. Available online: www.webmineral.com (accessed on 24 October 2024).
- Dill, H.G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Sci. Rev. 2010, 100, 1–420. [Google Scholar] [CrossRef]
- Hredzák, S.; Matik, M.; Lovás, M.; Briančin, J.; Štefušová, K.; Zubrik, A. Research on Pyrite Occurrence and Properties in Talc Ore with the Aim of Its Removal. Inżynieria Miner. J. Pol. Miner. Eng. Soc. 2014, 15, 23–28. [Google Scholar]
- George, M.W. Arsenic. Mineral Commodity Summaries 2024; Geological Survey: Reston, VA, USA, 2024; pp. 36–37, 212p. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Arsenic, Metals, Fibres, and Dusts. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Working Group: Lyon, France, 2012; Volume 100C, 526p. [Google Scholar]
- Patnaik, P. Handbook of Inorganic Chemicals; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Reichl, C.; Schatz, M. World Mining Data 2024; Federal Ministry of Finance: Vienna, Austria, 2024; Volume 39, pp. 1–266.
- Idoine, N.E.; Raycraft, E.R.; Hobbs, S.F.; Everett, P.; Evans, E.J.; Mills, A.J.; Currie, D.; Horn, S.; Shaw, R.A. World Mineral Production 2018–2022; British Geological Survey: Nottingham, UK, 2024; pp. 1–99. [Google Scholar]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Besedin, J.A.; Khudur, L.S.; Netherway, P.; Ball, A.S. Remediation Opportunities for Arsenic-Contaminated Gold Mine Waste. Appl. Sci. 2023, 13, 10208. [Google Scholar] [CrossRef]
- Bodiš, D.; Rapant, S.; Khun, M.; Klukanová, A.; Lexa, J.; Mackových, D.; Marsina, K.; Pramuka, S.; Vozár, J. Geochemical Atlas of the Slovak Republic, Part VI: Stream Sediments; Geological Survey of Slovak Republic: Bratislava, Slovakia, 1999; 146p. [Google Scholar]
- Šefčík, P.; Bystrická, G.; Káčer, Š. Pedogeochemical Maps—Explanatory Notes; State Geological Institute of Dionýz Štúr: Bratislava, Slovakia, 2012; 60p. (In Slovak) [Google Scholar]
- Rapant, S.; Vrana, K.; Bodiš, D.; Doboš, V.; Hanzel, V.; Kordík, J.; Slaninka, I.; Repčoková, Z.; Zvara, I. Geochemical Atlas of Slovakia. Part I: Groundwater; Geological Survey of Slovak Republic: Bratislava, Slovakia, 1996; 88p, ISBN 80-85314-67-3. [Google Scholar]
- Ondrejková, I.; Ženišová, Z.; Fľaková, R.; Krčmář, D.; Sracek, O. The Distribution of Antimony and Arsenic in Waters of the Dúbrava Abandoned Mine Site, Slovak Republic. Mine Water Environ. 2013, 32, 207–221. [Google Scholar] [CrossRef]
- Hiller, E.; Lalinská, B.; Chovan, M.; Jurkovič, Ľ.; Klimko, T.; Jankulár, M.; Hovorič, R.; Šottník, P.; Fľaková, R.; Ženišová, Z.; et al. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Appl. Geochem. 2012, 27, 598–614. [Google Scholar] [CrossRef]
- Majzlan, J.; Lalinská, B.; Chovan, M.; Bläß, U.; Brecht, B.; Göttlicher, J.; Steininger, R.; Hug, K.; Ziegler, S.; Gescher, J. A mineralogical, geochemical, and microbiogical assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. Am. Mineral. 2011, 96, 1–13. [Google Scholar] [CrossRef]
- Flakova, R.; Zenisova, Z.; Sracek, O.; Krcmar, D.; Ondrejkova, I.; Chovan, M.; Lalinská, B.; Fendekova, M. The behavior of arsenic and antimony at Pezinok mining site, southwestern part of the Slovak Republic. Environ. Earth Sci. 2012, 66, 1043–1057. [Google Scholar] [CrossRef]
- Jurkovič, Ľ.; Majzlan, J.; Hiller, E.; Klimko, T.; Voleková-Lalinská, B.; Méres, Š.; Göttlicher, J.; Steininger, R. Natural attenuation of antimony and arsenic in soils at the abandoned Sb-deposit Poproč, Slovakia. Environ. Earth Sci. 2019, 78, 672. [Google Scholar] [CrossRef]
- Rapant, S.; Dietzová, Z.; Cicmanová, S. Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia. Environ. Geol. 2006, 51, 387–397. [Google Scholar] [CrossRef]
- Hredzák, S.; Matik, M.; Šestinová, O.; Kupka, D.; Bártová, Z.; Hagarová, L.; Zubrik, A.; Znamenáčková, I.; Dolinská, S. Study of ochre sample from the Marta adit (Nižná Slaná, Spiš-Gemer Ore Mts., Eastern Slovakia). In Proceedings of the 32nd International Conference on the History, Present and Future of the Mining and Geology, Wellness Hotel Repiská, Demänovská dolina, the Low Tatras, Slovakia, 29–30 September 2022; Širila, J., Ed.; Slovakian Mining Society: Bratislava, Slovakia, 2022; pp. 124–131. [Google Scholar]
- Baláž, P. 3. Review of Reserved Deposits of Metals in Slovakia. Slovak Geol. Mag. 2015, 15, 31–38. [Google Scholar]
- Cicmanová, S.; Baláž, P. Historical ore mining and quality of the environment in the surrounding of Zlatá Idka village. Podzemn. Voda (Ground Water) 2007, XIII, 89–99. (In Slovak) [Google Scholar]
- Tréger, M.; Baláž, P. Geological and economic evaluation of Slovak gold deposits. Miner. Slovaca 1999, 31, 187–192. (In Slovak) [Google Scholar]
- Polák, S. Gold and gold-antimonite ores in Pezinok area, the Little Carpathians, Western Slovakia. Miner. Slovaca 1986, 18, 517–524. [Google Scholar]
- Majzlan, J.; Drahota, P.; Filippi, M. Parageneses and Crystal Chemistry of Arsenic Minerals. Rev. Mineral. Geochem. 2014, 79, 17–184. [Google Scholar] [CrossRef]
- Bolanz, R.M.; Majzlan, J.; Jurkovič, L.; Göttlicher, J. Mineralogy, geochemistry, and arsenic speciation in coal combustion waste from Nováky, Slovakia. Fuel 2012, 94, 125–136. [Google Scholar] [CrossRef]
- Jurkovič, L.; Hiller, E.; Veselská, V.; Peťková, K. Arsenic Concentrations in Soils Impacted by Dam Failure of Coal-Ash Pond in Zemianske Kostolany, Slovakia. Bull. Environ. Contam. Toxicol. 2011, 86, 433–437. [Google Scholar] [CrossRef]
- Peťková, K.; Lalinská-Voleková, B.; Jurkovič, Ľ.; Veselská, V. Chemical and mineralogical composition of the coal combustion waste (ashes) from the area of Zemianske Kostoľany. Miner. Slovaca 2011, 43, 377–386. (In Slovak) [Google Scholar]
- Keegan, T.; Hong, B.; Thornton, I.; Farago, M.; Jakubis, P.; Jakubis, M.; Pesch, B.; Ranft, U.; Nieuwenhuijsen, M.J.; EXPASCAN Study Group. Assessment of environmental arsenic levels in Prievidza district. J. Expo. Sci. Environ. Epidemiol. 2002, 12, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Societas Pedologica Slovaca. Morphogenetic Classification System of Soils in Slovakia; Basal reference taxonomy; Soil Science and Conservation Research Institute: Bratislava, Slovakia, 2014; pp. 1–96. (In Slovak) [Google Scholar]
- Hiller, E.; Jurkovič, L.; Kordík, J.; Slaninka, I.; Jankulár, M.; Majzlan, J.; Göttlicher, J.; Steininger, R. Arsenic mobility from anthropogenic impoundment sediments—Consequences of contamination to biota, water and sediments, Poša, Eastern Slovakia. Appl. Geochem. 2009, 24, 2175–2185. [Google Scholar] [CrossRef]
- Matejkovič, P.; Jurkovič, Ľ.; Jankulár, J.; Hiller, E.; Šottník, P. Accumulation and bioavailability of arsenic and zinc in native plants at tailings impoundment. Acta Environ. Univ. Comen. 2014, 22, 42–49. [Google Scholar]
- Gahrouei, A.E.; Rezapour, A.; Pirooz, M.; Pourebrahimi, S. From classic to cutting-edge solutions: A comprehensive review of materials and methods for heavy metal removal from water environments. Desalination Water Treat. 2024, 319, 100446. [Google Scholar] [CrossRef]
- Zubrik, A.; Matik, M.; Mačingová, E.; Danková, Z.; Jáger, D.; Briančin, J.; Machala, L.; Pechoušek, J.; Hredzák, S. The use of microwave irradiation for preparation and fast-acting regeneration of magnetic biochars. Chem. Eng. Process. Process Intensif. 2022, 178, 109016. [Google Scholar] [CrossRef]
- Zubrik, A.; Matik, M.; Lovás, M.; Štefušová, K.; Danková, Z.; Hredzák, S.; Václavíková, M.; Bendek, F.; Briančin, J.; Machala, L.; et al. One-step microwave synthesis of magnetic biochars with sorption properties. Carbon Lett. 2018, 26, 31–42. [Google Scholar] [CrossRef]
- Zubrik, A.; Matik, M.; Lovás, M.; Danková, Z.; Kaňuchová, M.; Hredzák, S.; Briančin, J.; Šepelák, V. Mechanochemically Synthesised Coal-Based Magnetic Carbon Composites for Removing As(V) and Cd(II) from Aqueous Solutions. Nanomaterials 2019, 9, 100. [Google Scholar] [CrossRef]
- Wen, T.; Wang, J.; Yu, S.; Chen, Z.; Hayat, T.; Wang, X. Magnetic Porous Carbonaceous Material Produced from Tea Waste for Efficient Removal of As(V), Cr(VI), Humic Acid, and Dyes. ACS Sustain. Chem. Eng. 2017, 5, 4371–4380. [Google Scholar] [CrossRef]
- Cha, J.S.; Jang, S.-H.; Lam, S.S.; Kim, H.; Kim, Y.-M.; Jeon, B.-H.; Park, Y.-K. Performance of CO2 and Fe-modified lignin char on arsenic (V) removal from water. Chemosphere 2021, 279, 130521. [Google Scholar] [CrossRef]
- Fan, J.; Xu, X.; Ni, Q.; Lin, Q.; Fang, J.; Chen, Q.; Shen, X.; Lou, L. Enhanced As (V) Removal from Aqueous Solution by Biochar Prepared from Iron-Impregnated Corn Straw. J. Chem. 2018, 2018, 5137694. [Google Scholar] [CrossRef]
- Cho, D.-W.; Yoon, K.; Kwon, E.E.; Biswas, J.K.; Song, H. Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environ. Pollut. 2017, 229, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wan, Z.; Sun, Y.; Cao, X.; Hou, D.; Alessi, D.S.; Ok, Y.S.; Tsang, D.C.W. Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe. Chem. Eng. J. 2021, 425, 131489. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.-G.; Liu, S.-B.; Liu, H.-Y.; Zeng, G.-M.; Tan, X.-F.; Yang, C.-P.; Ding, Y.; Yan, Z.-L.; Cai, X.-X. Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chem. Eng. J. 2017, 314, 223–231. [Google Scholar] [CrossRef]
- He, R.; Peng, Z.; Lyu, H.; Huang, H.; Nan, Q.; Tang, J. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Sci. Total Environ. 2018, 612, 1177–1186. [Google Scholar] [CrossRef]
- Dieguez-Alonso, A.; Anca-Couce, A.; Frišták, V.; Moreno-Jiménez, E.; Bacher, M.; Bucheli, T.D.; Cimò, G.; Conte, P.; Hagemann, N.; Haller, A.; et al. Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior. Chemosphere 2019, 214, 743–753. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, J.; Fu, M.; Ok, Y.S.; Hou, Y.; Cai, C. Adsorption antagonism and synergy of arsenate(V) and cadmium(II) onto Fe-modified rice straw biochars. Environ. Geochem. Health 2019, 41, 1755–1766. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, Y.; Brookes, P.C.; Wang, F.; Zhang, Q.; Xu, J.; Liu, X. Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects. Sci. Total Environ. 2021, 750, 141672. [Google Scholar] [CrossRef]
- Wang, C.; Luo, H.; Zhang, Z.; Wu, Y.; Zhang, J.; Chen, S. Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J. Hazard. Mater. 2014, 268, 124–131. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Li, Y.; Creamer, A.E.; He, F. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. J. Hazard. Mater. 2017, 322, 172–181. [Google Scholar] [CrossRef]
- Yoon, K.; Cho, D.-W.; Tsang, D.C.W.; Bolan, N.; Rinklebe, J.; Song, H. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresour. Technol. 2017, 246, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, B.; Chai, L.; Liu, Y.; Zeng, G.; Wang, X.; Zeng, W.; Shang, M.; Deng, J.; Zhou, Z. Enhancement of As(v) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv. 2017, 7, 10891–10900. [Google Scholar] [CrossRef]
- Darvishi Cheshmeh Soltani, R.; Safari, M.; Maleki, A.; Rezaee, R.; Shahmoradi, B.; Shahmohammadi, S.; Ghahramani, E. Decontamination of arsenic(V)-contained liquid phase utilizing Fe3O4/bone char nanocomposite encapsulated in chitosan biopolymer. Environ. Sci. Pollut. Res. 2017, 24, 15157–15166. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic sorption on zero-valent iron-biochar complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef]
- Nham, N.T.; Tahtamouni, T.M.A.; Nguyen, T.D.; Huong, P.T.; Jitae, K.; Viet, N.M.; Noi, N.V.; Phuong, N.M.; Anh, N.T.H. Synthesis of iron modified rice straw biochar toward arsenic from groundwater. Mater. Res. Express 2019, 6, 115528. [Google Scholar] [CrossRef]
- Wei, Y.; Wei, S.; Liu, C.; Chen, T.; Tang, Y.; Ma, J.; Yin, K.; Luo, S. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Res. 2019, 167, 115107. [Google Scholar] [CrossRef]
- Guo, J.; Yan, C.; Luo, Z.; Fang, H.; Hu, S.; Cao, Y. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium(II) and arsenic(V) adsorption. J. Environ. Sci. 2019, 85, 168–176. [Google Scholar] [CrossRef]
- Alchouron, J.; Navarathna, C.; Chludil, H.D.; Dewage, N.B.; Perez, F.; Hassan, E.B.; Pittman Jr, C.U.; Vega, A.S.; Mlsna, T.E. Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation. Sci. Total Environ. 2020, 706, 135943. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, X.; Feng, Y.; Ashraf, M.A.; Liu, Y.; Su, C.; Qian, K.; Liu, P. As(III) and As(V) removal mechanisms by Fe-modified biochar characterized using synchrotron-based X-ray absorption spectroscopy and confocal micro-X-ray fluorescence imaging. Bioresour. Technol. 2020, 304, 122978. [Google Scholar] [CrossRef]
- Korpayev, S.; Kavaklı, C.; Kavaklı, P.A. Nanoscale Zerovalent Iron Immobilized on Functionalized Nonwoven Cotton Fabric for As(V) Adsorption. Water Air Soil Pollut. 2021, 232, 131. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, J.; Liu, X.; Bai, S.; Lin, H.; Wang, D. Reduction and removal of As(V) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge. Chemosphere 2021, 277, 130273. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Feng, J.; Ge, D.; Wang, Y.; Lu, X. Preparation of carbon/Al2O3/nZVI magnetic nanophase materials produced from drinking water sludge for the removal of As(V) from aqueous solutions. Environ. Sci. Pollut. Res. 2021, 28, 7261–7270. [Google Scholar] [CrossRef] [PubMed]
- Bursztyn Fuentes, A.L.; Barraqué, F.; Mercader, R.C.; Scian, A.N.; Montes, M.L. Efficient low-cost magnetic composite based on eucalyptus wood biochar for arsenic removal from groundwater. Groundw. Sustain. Dev. 2021, 14, 100585. [Google Scholar] [CrossRef]
- Xu, L.; Shu, Z.; Feng, L.; Zhou, J.; Li, T.; Zhao, Z.; Wang, W. Fresh biomass derived biochar with high-load zero-valent iron prepared in one step for efficient arsenic removal. J. Clean. Prod. 2022, 352, 131616. [Google Scholar] [CrossRef]
- Zubrik, A.; Jáger, D.; Mačingová, E.; Matik, M.; Hredzák, S. Spontaneous degradation of methylene blue adsorbed on magnetic biochars. Sci. Rep. 2023, 13, 14773. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I Solids J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H. Über die adsorption in lösungen. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar] [CrossRef]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L. Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front. Environ. Sci. Eng. China 2009, 3, 320–324. [Google Scholar] [CrossRef]
- Vasanth Kumar, K.; Sivanesan, S. Prediction of optimum sorption isotherm: Comparison of linear and non-linear method. J. Hazard. Mater. 2005, 126, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Bekényiová, A.; Danková, Z.; Čechovská, K.; Fedorová, E.; Nováková, J.; Uhrinová, K.; Briančin, J.; Kúšik, D. Sorption of arsenic from underground mine water under in situ conditions—Characteristic of sorbents and ochre precipitates. In Proceedings of the XXXI Scientific Symposium with International Participation on Situation in Ecologically Loaded Regions of Slovakia and Central Europe, Hrádok, Slovakia, 24–25 November 2022; pp. 138–142, ISBN 978-80-89883-13-4. (In Slovak). [Google Scholar]
- Bekényiová, A.; Danková, Z.; Čechovská, K.; Fedorová, E.; Nováková, J.; Briančin, J.; Vizi, L.; Kúšik, D. Characterization of ochre precipitate loaded with arsenic from mine water and study of its stability by using of leaching tests and sequential extraction analysis. Miner. Slovaca 2023, 55, 141–156. [Google Scholar] [CrossRef]
- Danková, Z.; Bekényiová, A.; Čechovská, K.; Fedorová, E.; Nováková, J.; Uhrinová, K.; Briančin, J.; Kúšik, D. Experimental study of polluted sediment and As elimination from the pit water in the locality of Zlatá Idka-Rieka, Slovakia. Miner. Slovaca 2022, 54, 3–16. [Google Scholar] [CrossRef]
- Bačová, N. Niektoré poznatky o banských vodách priestoru Medzev—Zlatá Idka (Some knowledge about mine water from the area Medzev—Zlatá Idka). Podzemn. Voda 2006, XII, 39–49. (In Slovak) [Google Scholar]
- Booker, N.; Cooney, E.; Öcal, G.; Priestley, A.J. The SIROFLOC Sewage Treatment Process: A High Rate Process for Sewage Clarification, Chemical Water and Wastewater Treatment III; Klute, R., Hahn, H.H., Eds.; Springer Berlin Heidelberg: Heidelberg, Germany, 1994; pp. 231–242. [Google Scholar]
- Pradeep, T.; Anshup. Noble metal nanoparticles for water purification: A critical review. Thin Solid Film. 2009, 517, 6441–6478. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, T.V.; Vigneswaran, S.; Ha, N.T.H.; Ratnaweera, H.A. Review of Theoretical Knowledge and Practical Applications of Iron-Based Adsorbents for Removing Arsenic from Water. Minerals 2023, 13, 741. [Google Scholar] [CrossRef]
- Carabante, I.; Grahn, M.; Holmgren, A.; Kumpiene, J.; Hedlund, J. Adsorption of As (V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloid. Surface. A Physicochem. Eng. Asp. 2009, 346, 106–113. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
Adorption of As5+ | Qm (mg/g) | Reference |
---|---|---|
Fe/Ca-rich biochar (paper mill sludge) | 22.8 | [59] |
Pristine pinewood biochars/zero-valent Fe | 124.5 | [58] |
Magnetic chitosan biochar | 17.9 | [60] |
Magnetic gelatin-modified biochar (chestnut shell) | 45.8 | [52] |
Magnetic biochar (spent coffee ground) | 12.1–12.6 | [50] |
Magnetic porous carbonaceous material (tea waste) | 38.0 | [47] |
Immobilized Fe3O4/bone char nanocomposite | 0.1 | [61] |
Magnetic biochar (wheat straw/ferrofluid) | 25.6 | [45] |
Iron-impregnated corn straw biochar | 6.8 | [53] |
Zero-valent iron biochar (switchgrass) | 7.9 | [62] |
Zero-valent iron biochar (red oak) | 15.6 | [62] |
Magnetic char (coal/ferrofluid) | 19.9 | [46] |
Iron-modified rice straw biochar | 26.9 | [63] |
Al-blended softwood biochar | 14.4 | [54] |
Fe-blended softwood biochar | 10.9 | [54] |
Fe oxide nanoneedle biochar (cotton fibers) | 8.13 | [64] |
Humic acid/Fe-Mn oxide-loaded biochar (rice husk) | 35.6 | [65] |
Activated bamboo biochar/Fe3O4 | 85 | [66] |
Bamboo biochar/Fe3O4 | 90 | [66] |
Fe-modified biochars (Poplar tree) | 87.3–121.6 | [67] |
Zero-valent iron immobilized on cotton fabric | 108.7 | [68] |
Nano-zero valent iron and sewage sludge | 11.3 | [69] |
Carbon/Al2O3/nano-zero-valent iron material | 20.2 | [70] |
Magnetic eucalyptus wood charcoal | 0.021 | [71] |
Lignin biochar/FeOX | 6.8 | [48] |
Magnetic biochar (wheat straw/maghemite) | 24.9 | [44] |
Zero-valent iron/biochar composite (bamboo) | 127.2 | [72] |
pH | Mn [µg/L] | Fe [µg/L] | Ba [µg/L] | Sb [µg/L] | As [µg/L] | Ni [µg/L] | |
Method | - | AAS | AAS | ICP-MS | ICP-MS | ICP-MS | ICP-MS |
Value | 6.9 | 425 | 1428 | 2.5 | 0.6 | 201.2 | 1.2 |
Zn [µg/L] | Cu [µg/L] | Cd [µg/L] | Pb [µg/L] | Cr [µg/L] | Co [µg/L] | Li [µg/L] | |
Method | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | IC |
Value | 21.7 | 1.6 | <0.1 | 0.8 | 0.2 | 0.7 | 12.4 |
Na [µg/L] | NH4+ [µg/L] | K [µg/L] | Mg [µg/L] | Ca [µg/L] | |||
Method | IC | IC | IC | IC | IC | ||
Value | 5334 | 34.6 | 864 | 12,140 | 21,880 | ||
Element | F− [µg/L] | Cl− [µg/L] | SO42− [µg/L] | ||||
Method | IC | IC | IC | ||||
Value | 119 | 1033 | 31,334 |
Langmuir Isotherm Model | Freundlich Isotherm Model | Pseudo-Second-Order Kinetic Model | Pseudo-First-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
Qm [mg/g] | 6.2 | KF [L/g] | 1.44 | qe experimental [mg/g] | 2.41 | qe experimental [mg/g] | 2.41 |
b [L/mg] | 0.13 | N | 3.37 | qe teoretic [mg/g] | 2.17 | qe teoretic [mg/g] | 2.06 |
R2 | 0.95 | R2 | 0.97 | k2 [g/mg.min] | 0.122 | k1 [1/min] | 0.186 |
h2 [mg/g.min] | 0.575 | h1 [mg/g.min] | 0.382 | ||||
R2 | 0.961 | R2 | 0.903 |
Pseudo-Second-Order Kinetic Model | Pseudo-First-Order Kinetic Model | ||
---|---|---|---|
qe experimental [µg/g] | 198.6 | qe experimental [µg/g] | 198.6 |
qe teoretic [µg/g] | 195.8 | qe teoretic [µg/g] | 194.6 |
k2 [g/µg min] | 0.0659 | k1 [1/min] | 2.812 |
h2 [µg/g min] | 2526 | h1 [µg/g min] | 547.2 |
R2 | 0.999 | R2 | 0.998 |
Town/Village | Region | Pollution and Comments |
---|---|---|
Poša (1) | Eastern Slovakia | Chemical industry |
Zlatá Idka (2) | Eastern Slovakia | As bearing Au–Ag–Sb ores |
Poproč (3) | Eastern Slovakia | Tailings from the flotation of sulfide ores; As/Sb contamination |
Čučma (4) | Eastern Slovakia | Old adits; Sb and As contamination |
Dúbrava (5) | Central Slovakia | Old mine adits; Sb mining in the past; Sb/As contamination |
Medzibrod (6) | Central Slovakia | Sulfide ore extraction; Sb/As contamination |
Prievidza (7) | Central Slovakia | Coal mining and power plant; As in fly ash |
Pezinok(8) | Southwestern Slovakia | Adit outflows; As and Sb contamination |
Pernek (9) | Southwestern Slovakia | Deposits; Sb and As contamination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubrik, A.; Mačingová, E.; Hredzák, S.; Matik, M. Arsenic in Slovakia: Pollution Issues and the Potential of Magnetic Carbon Biomaterials for Wastewater Treatment. Materials 2025, 18, 289. https://doi.org/10.3390/ma18020289
Zubrik A, Mačingová E, Hredzák S, Matik M. Arsenic in Slovakia: Pollution Issues and the Potential of Magnetic Carbon Biomaterials for Wastewater Treatment. Materials. 2025; 18(2):289. https://doi.org/10.3390/ma18020289
Chicago/Turabian StyleZubrik, Anton, Eva Mačingová, Slavomír Hredzák, and Marek Matik. 2025. "Arsenic in Slovakia: Pollution Issues and the Potential of Magnetic Carbon Biomaterials for Wastewater Treatment" Materials 18, no. 2: 289. https://doi.org/10.3390/ma18020289
APA StyleZubrik, A., Mačingová, E., Hredzák, S., & Matik, M. (2025). Arsenic in Slovakia: Pollution Issues and the Potential of Magnetic Carbon Biomaterials for Wastewater Treatment. Materials, 18(2), 289. https://doi.org/10.3390/ma18020289