Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep
Highlights
- Creep deformation sensitivity of the AA2124/SiC was strongly dependent on the stress level.
- A range of threshold stresses was observed that defined the boundaries between slow and fast creep.
- Microstructure observations enabled the identification of defects responsible for creep damage development in the composites tested.
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Creep Tests on AA2124 + 17 vol.% SiC (3 µm) Composite
3.2. Creep Tests on AA2124 +17 vol.% SiC (0.6 µm)
3.3. Creep Tests on AA2124 + 25 vol.% SiC (0.6 µm)
3.4. Microstructural Observations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gia Ninh, D.; Trong Long, N.; Van Vang, T.; Hoang Ha, N.; Thanh Nguyen, C.; Viet Dao, D. A new study for aeroplane wing shapes made of boron nitride nanotubes-reinforced aluminium, Part I: Review, dynamical analyses and simulation. Compos. Struct. 2023, 303, 1–28. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Jiang, X.; Tang, H.; Wang, X.; Hu, Y. High damping and modulus if aluminium matrix composites reinforced with carbon nanotube skeleton inspired by diamond lattice. Compos. Struct. 2023, 323, 1–9. [Google Scholar] [CrossRef]
- Krstić, J.; Jovanović, J.; Gajević, S.; Miladinović, S.; Vaxevanidis, N.; Kiss, I.; Stojanović, B. Application of metal matrix nanocomposites in engineering. Adv. Eng. Lett. 2024, 3, 180–190. [Google Scholar] [CrossRef]
- Gajević, S.; Miladinović, S.; Güler, O.; Özkaya, S.; Stojanović, B. Optimalization of dry sliding wear in hot-pressed Al/B4C metal matrix composites. Materials 2024, 17, 4056. [Google Scholar] [CrossRef]
- Gajević, S.; Miladinović, S.; Ivanović, L.; Skulić, A.; Stojanović, B. A review on mechanical properties of aluminium-based metal matrix nanocomposites. Tribol. Mater. 2023, 2, 114–127. [Google Scholar] [CrossRef]
- Seikh, Z.; Sekh, M.; Mandal, G.; Sengupta, B.; Sinha, A. Metal matrix composites processed through powder metallurgy: A brief overview. J. Inst. Eng. (India) Ser. D 2024, 106, 771–778. [Google Scholar] [CrossRef]
- Bhowmik, A.; Kumar, R.; Beemkumar, N.; Kumar, A.V.; Singh, G.; Kulshreshta, A.; Mann, V.S.; Santhosh, A.J. Casting of particle reinforced metal matrix composite by liquid state fabrication method: A review. Results Eng. 2024, 24, 1–17. [Google Scholar] [CrossRef]
- Hu, Z.; Yin, H.; Li, M.; Li, J.; Zhu, H. Research and developments of ceramic-reinforced steel matrix composites—A comprehensive review. Int. J. Adv. Manuf. Technol. 2024, 131, 125–149. [Google Scholar] [CrossRef]
- Sarmah, P.; Gupta, K. Recent advancements in fabrication of metal matrix composites: A systemic review. Materials 2024, 17, 4635. [Google Scholar] [CrossRef]
- Nagaraju, S.B.; Somashekara, M.K. Wear behaviour of hybrid (boron carbide-graphite) aluminium matrix composites under high temperature. J. Eng. Appl. Sci. 2023, 70, 1–23. [Google Scholar] [CrossRef]
- Rakoczy, Ł.; Pajor, K.; Kozień, D.; Kargul, T.; Plusch, A.; Cygan, R. Analysis of the microstructure and selected properties of MMC composites produced via suction casting. In Proceedings of the 75th World Foundry Congress, October Foundry Congress, Deyang, China, 25–30 October 2024. [Google Scholar]
- May, M.; Rapakula, G.D.; Matura, P. Non-polymer matrix composite materials for space applications. Compos. Part C Open Access 2020, 3, 100057. [Google Scholar] [CrossRef]
- Patil, A.; Nartu, M.S.K.K.Y.; Ozdemir, F.; Banerjee, R.; Gupta, R.K.; Borkar, T. Strengthening effects of multi-walled carbon nanotubes reinforced nickel matrix nanocomposites. J. Alloys Compd. 2021, 876, 159981. [Google Scholar] [CrossRef]
- Nikasil Cylinder NSC Plating Reconditioning for Porsche Engines—Nikasil & NSC Cylinder Platings-Products. Available online: https://lnengineering.com/nikasil-cylindernsc-plating-reconditioning-for-porsche-engines.html (accessed on 15 September 2025).
- Nikasil Plating—Kustom Kraft Performance. Available online: https://kustom-kraft.com/nikasil-plating/ (accessed on 11 August 2024).
- Wasekar, N.P.; Bathini, L.; Ramakrishna, L.; Rao, D.S.; Padmanabham, G. Pulsed electrodeposition, mechanical properties and wear mechanism in Ni-W/SiC nanocomposite coatings used for automotive applications. Appl. Surf. Sci. 2020, 527, 146896. [Google Scholar] [CrossRef]
- Chen, W.; Yang, T.; Dong, L.; Elmasry, A.; Song, J.; Seng, N.; Elmarakbi, A.; Liu, T.; Lv, H.B.; Fu, Y.Q. Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications. Nanotechnol. Precis. Eng. 2020, 3, 189–210. [Google Scholar] [CrossRef]
- Abid, J.; Ahmad, A.; Raza, Y.; Ayub, A.; Yasir, H.; Raza, H.; Abid, M.; Murtaza, M.A.; Masood, W.; Janjua, A.B. Tailoring adhesive bonding strength: The role of mechanical abrasion and cure time in aluminium-stainless steel joints. Eng. Res. Express 2025, 7, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Tang, A.; Nasr, A.; Lin, H. The applications of nanocomposite catalysts. In Reference Module in Biofuel Production. Multifunctional Nanocomposites for Energy and Environmental Applications; Guo, Z., Chen, Y., Lu, N.L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 309–350. [Google Scholar]
- Moskalewicz, T.; Wendler, B.; Zimowski, B.; Dubiel, B.; Czyrska-Filemonowicz, A. Microstructure, micro-mechanical and tribological properties of the nc-WC/a-c nanocomposite coatings magnetron sputtered on non-hardened and oxygen hardened Ti-6Al-4V alloy. Surf. Coat. Technol. 2010, 205, 2668–2677. [Google Scholar] [CrossRef]
- Chavan, S.; Dubal, S. Nanotechnology applications in automobiles: Comprehensive review of existing data. Int. J. Mod. Trends Eng. Sci. 2020, 7, 18–22. [Google Scholar]
- Chitransh, C.S.; Saxena, S. Fracture mechanics based determination of initiation fracture toughness (KIC) of Al-MMC using experimental, analytical and numerical techniques. Int. J. Met. 2025, 1–11. [Google Scholar] [CrossRef]
- Pandey, A.K.S.; Singh, R.; Chauhan, A.K. Tribological analysis of aluminium-based MMC reinforced with silicon carbide & magnesium. Int. J. Met. 2025, 105, 1–11. [Google Scholar]
- Kowalewski, Z.L. Methods for Creep Rupture Analysis—Previous Attempts and New Challenges. In From Creep Damage Mechanics to Homogenization Methods; Altenbach, H., Matsuda, T., Okumura, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 163–198. [Google Scholar]
- Tjong, S.C.; Ma, Z.Y. High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes. Compos. Sci. Technol. 1999, 59, 1117–1125. [Google Scholar] [CrossRef]
- Whitehouse, A.F.; Winand, H.M.A. The tensile creep response of Al-SiC particulate and whisker composites. Scr. Mater. 1999, 41, 817–822. [Google Scholar] [CrossRef]
- Whitehouse, A.F.; Winand, H.M.A.; Clyne, T.W. The effect of processing route and reinforcement geometry on isothermal creep behaviour of particulate and short fibre MMCs. Mater. Sci. Eng. A 1998, 242, 57–69. [Google Scholar] [CrossRef]
- Pahutova, M.; Sklenicka, V.; Kucharova, K.; Svoboda, M. Creep resistance in magnesium alloys and their composites. Int. J. Mater. Prod. Technol. 2003, 18, 116–140. [Google Scholar] [CrossRef]
- Sklenicka, V.; Svoboda, M.; Pahutova, M.; Kucharova, K.; Langdon, T.G. Microstructural processes in creep of an AZ91magnesium-based composite and its matrix alloy. Mater. Sci. Eng. A 2001, 319–321, 741–745. [Google Scholar] [CrossRef]
- Moll, F.; Chmelik, F.; Lukac, P.; Mordike, B.L.; Kainer, K.U. Creep behaviour of a QE22-SiC particle reinforced composite investigated by acoustic emission and scanning electron microscopy. Mater. Sci. Eng. A 2000, 291, 246–249. [Google Scholar] [CrossRef]
- Winand, H.M.A.; Whitehouse, A.F.; Withers, P.J. An investigation of the isothermal creep response of Al-based composites by neutron diffraction. Mater. Sci. Eng. A 2000, 284, 103–113. [Google Scholar] [CrossRef]
- Li, Y.; Langdon, T.G. Creep behaviour of an Al-6061 metal matrix composite reinforced with alumina particulates. Acta Mater. 1997, 45, 4797–4806. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yu, J. Effect of matrix hardness on the creep properties of a 12CrMoVNb steel. Metall. Mater. Trans. A 1999, 30, 2331–2339. [Google Scholar] [CrossRef]
- Arnold, S.M.; Pindera, M.J.; Wilt, T.E. Influence of fiber architecture on the inelastic response of metal matrix composites. Int. J. Plast. 1996, 12, 507–545. [Google Scholar] [CrossRef]
- Yawny, A.; Kaustrater, G.; Skrotzki, B.; Eggeler, G. On the influence of fibre texture on the compression creep behaviour of a short fibre reinforced aluminium alloy. Scr. Mater. 2002, 46, 837–842. [Google Scholar] [CrossRef]
- Gariboldi, E.; Vedani, M. Creep damage behaviour of Al6061-Al2O3 particulate composites. Int. J. Mater. Prod. Technol. 2002, 17, 243–260. [Google Scholar]
- Requena, G.; Telfser, D.; Horist, C.; Degischer, H.P. Creep behaviour of Al6061 alloy and Al6061 metal matrix composite. Mater. Sci. Technol. 2002, 18, 515–521. [Google Scholar] [CrossRef]
- Hung, N.P.; Lim, C.S.; Ho, Y.K.; Tan, Y.C.; Tan, W.G. Cumulative creep and hot isostatic pressing of particle-reinforced metal matrix composites. J. Mater. Process. 2000, 101, 104–109. [Google Scholar] [CrossRef]
- Pyzalla, A.; Camin, B.; Buslaps, T.D.; Michiel, M.; Kaminski, H.; Kottar, A.; Pernack, A.; Reimer, W. Simultaneous tomography and diffraction analysis of creep damage. Science 2005, 308, 92–95. [Google Scholar] [CrossRef]
- Pandey, A.B.; Mishra, R.S.; Mahajan, Y.R. Creep fracture in Al-SiC metal-matrix composites. J. Mater. Sci. 1993, 28, 2943–2949. [Google Scholar] [CrossRef]
- Nieh, T.G.; Xia, K.; Langdon, T.G. Mechanical properties of discontinuous SiC reinforced aluminium composites at elevated temperatures. J. Eng. Mater. Technol. 1988, 110, 77–82. [Google Scholar] [CrossRef]
- Barth, E.P.; Morton, J.T.; Tien, J.K.; Lian, P.K.; Gungor, M.N. Fundamental relations between microstructure and mechanical properties of metal matrix composites. Miner. Met. Mater. Soc. Warrendale PA 1990, 42, 839. [Google Scholar]
- Spigarelli, S.; Cabibbo, M.; Evangelista, E.; Langdon, T.G. Creep properties of an Al-2024 composite reinforced with SiC particulates. Mater. Sci. Eng. A 2002, 328, 39–47. [Google Scholar] [CrossRef]
- Li, Y.; Langton, T.G. A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Mater. 1999, 47, 3395–3403. [Google Scholar] [CrossRef]
- Requena, G.; Bauer, B.; Degischer, H.P.; Lieblich, M. The effect of ball milling and wet blending on the creep behavior of a particle reinforced 2124 Al-alloy. Int. J. Mater. Res. 2011, 102, 982–992. [Google Scholar] [CrossRef]
- Fernández, R.; González-Doncel, G. Additivity of reinforcing mechanisms during creep of metal matrix composites: Role of the microstructure and the processing route. J. Alloys Compd. 2009, 475, 202–206. [Google Scholar] [CrossRef]
- Kim, W.J.; Yeon, J.H.; Shin, D.H.; Hong, S.H. Deformation behavior of powder-metallurgy processed high-strain-rate superplastic 20%SiCp:2124 Al composite in a wide range of temperature. Mater. Sci. Eng. A 1999, 269, 142–151. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Tjong, S.C. The high-temperature creep behavior of 2124 aluminum alloys with and without particulate and SiC-whisker reinforcement. Compos. Sci. Technol. 1999, 59, 737–747. [Google Scholar] [CrossRef]
- Cadek, J.; Pauhutova, M.; Sustek, V. Creep behavior of a 2124 Al alloy reinforced by 20 vol.% silicon carbide particulates. Mater. Sci. Eng. A 1998, 246, 252–264. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y.; Mohamed, F.A. Creep and substructure in 5 vol.% SiC–2124 Al composite. Mater. Sci. Eng. A 2002, 332, 330–342. [Google Scholar] [CrossRef]
- Ryu, H.J.; Sohn, W.H.; Hong, S.H. Effect of SiC volume fraction on creep behavior of SiCp/2124Al metal matrix composite. Mater. Sci. Res. Int. 1999, 5, 280–284. [Google Scholar] [CrossRef]
- Huang, L.; Kai, X.; Wang, T.; Zhao, P.; Qian, W.; Guan, C.; Gao, X.; Cao, Z.; Zhao, Y. Enhanced creep resistance and microstructure in 7055 Al alloy by in situ (Al2O3 + ZrB2) nanoparticles and Al3(Er, Zr). Mater. Charact. 2024, 216, 1–19. [Google Scholar] [CrossRef]
- Shan, L.; Tan, C.Y.; Shen, X.; Ramesh, S.; Kolahchi, R.; Hajmohammad, M.H.; Rajak, D.K. Creep behaviour of A356 aluminum alloy reinforced with multi-walled carbon nanotubes by stir casting. Materials 2022, 15, 8959. [Google Scholar] [CrossRef]
- Wang, T.; Kai, X.; Huang, L.; Peng, Q.; Sun, K.; Zhao, Y. High-temperature creep behavior and creep mechanism of in situ (ZrB2 + Al2O3)np/7055 Al nanocomposites. J. Alloys Compd. 2024, 981, 1–16. [Google Scholar] [CrossRef]
- Rutecka, A.; Kursa, M.; Pietrzak, K.; Kowalczyk-Gajewska, K.; Makowska, K.; Wyszkowski, M. Damage evolution in AA2124/SiC metal matrix composites under tension with consecutive unloadings. Arch. Civ. Mech. Eng. 2020, 20, 1–18. [Google Scholar] [CrossRef]
- Rutecka, A. Modern metal matrix composites (MMC) AA2124/SiC under tension, fatigue and creep loading—first step to detection and estimation of damage. In Wybrane Zagadnienia Współczesnej Inżynierii Lądowej; Monografia Wydziału Inżynierii Lądowej; Gilewski, W.J., Ed.; WUT Publishing House: Warsaw, Poland, 2018; pp. 155–170. (In Polish) [Google Scholar]
- Rutecka, A.; Kowalewski, Z.L.; Pietrzak, K.; Dietrich, L.; Rehm, W. Creep and Low Cycle Fatigue Investigations of Light Aluminium Alloys for Engine Cylinder Heads. Strain 2011, 47, 374–381. [Google Scholar] [CrossRef]
Specimen | Temperature [°C] | Stress [MPa] | Test Time [h] | Strain [%] | Minimum Creep Rate [s−1] | Test End Notes |
---|---|---|---|---|---|---|
Specimen 1 | 300 | 50 | 1180 | 0.65 | 6.5 × 10−10 | Test stopped |
Specimen 2 | 300 | 55 | 195 | 1.5 | 1.4 × 10−8 | Test stopped |
Specimen 3 | 300 | 55 | 198 | 1.7 | 1.3 × 10−8 | Test stopped |
Specimen 4 | 300 | 39/60 | (118 + 3) | 2 | 1.2 × 10−6 (60 MPa) | Test stopped |
Specimen No. | Temperature [°C] | Stress [MPa] | Test Time [h] | Strain [%] | Minimum Creep Rate [s−1] | Test End Notes |
---|---|---|---|---|---|---|
5 | 300 | 65 | 479 | 0.44 | 5.3 × 10−11 | Test stopped |
6 | 300 | 70 | 1645 | 0.9 | 3.5 × 10−10 | Until rupture |
6a | 300 | 70 | 530 | 0.78 | 5.3 × 10−10 | Test stopped |
7 | 300 | 71 | 1591 | 1.16 | 6.9 × 10−10 | Until rupture |
8 | 300 | 72 | 0.4 | 2 | 5.3 × 10−6 | Test stopped |
9 | 300 | 75 | 0.4 | 26 | - | Test stopped |
10 | 300 | 75 | 0.2 | 2 | - | Test stopped |
Specimen No. | Temperature [°C] | Stress [MPa] | Test Time [h] | Strain [%] | Minimum Creep Rate [s−1] | Test End Notes |
---|---|---|---|---|---|---|
11 | 300 | 85 | 1100 | 0.76 | 6.4 × 10−10 | Until rupture |
12 | 300 | 90 | 470 | 0.76 | 1.3 × 10−9 | Until rupture |
13 | 300 | 91 | 649 | 1.04 | 1.3 × 10−9 | Until rupture |
13a | 300 | 91 | 624 | 0.8 | 7.5 × 10−10 | Test stopped |
14 | 300 | 92 | 0.096 | 1.89 | - | Test stopped |
Figures Number | The Size of Reinforcement | Measurement Conditions | Void Density N [1/μm2] | Volume Fraction of Voids VV [%] | Mean Feret Diameter of Void Fśr [μm] | Particle Fragmentation P [1/μm2] |
---|---|---|---|---|---|---|
Figure 5. | 3 μm AA2124 + 17 vol.% SiC specimen 1 | 300 °C 50 MPa | 0.00100 | 0.41664 | 2.08333 | 0.00031 |
Figure 6. | 3 μm AA2124 + 17 vol.% SiC specimen 3 | 300 °C 55 MPa | 0.00150 | 0.55556 | 1.46755 | 0.00056 |
Figure 7. | 0.6 μm AA2124 + 17 vol.% SiC specimen 6 | 300 °C 70 MPa | 0.00088 | 0.69444 | 2.35294 | - |
Figure 8. | 0.6 μm AA2124 + 17 vol.% SiC specimen 7 | 300 °C 71 MPa | 0.00106 | 0.90278 | 3.53992 | - |
Figure 9. | 0.6 μm AA2124 + 17 vol.% SiC specimen 6a | 300 °C 70 MPa | 0.00194 | 0.69444 | 2.66386 | - |
Figure 10. | 0.6 μm AA2124 + 25 vol.% SiC specimen 4 | 300 °C 90 MPa | 0.00088 | 0.45139 | 2.50000 | - |
Figure 11. | 0.6 μm AA2124 + 25 vol.% SiC specimen 13 | 300 °C 91 MPa | 0.00463 | 0.52083 | 2.82250 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutecka, A.; Makowska, K.; Kowalewski, Z.L. Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep. Materials 2025, 18, 4495. https://doi.org/10.3390/ma18194495
Rutecka A, Makowska K, Kowalewski ZL. Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep. Materials. 2025; 18(19):4495. https://doi.org/10.3390/ma18194495
Chicago/Turabian StyleRutecka, Agnieszka, Katarzyna Makowska, and Zbigniew Ludwik Kowalewski. 2025. "Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep" Materials 18, no. 19: 4495. https://doi.org/10.3390/ma18194495
APA StyleRutecka, A., Makowska, K., & Kowalewski, Z. L. (2025). Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep. Materials, 18(19), 4495. https://doi.org/10.3390/ma18194495