Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Creep Tests on AA2124 + 17 vol.% SiC (3 µm) Composite
3.2. Creep Tests on AA2124 +17 vol.% SiC (0.6 µm)
3.3. Creep Tests on AA2124 + 25 vol.% SiC (0.6 µm)
3.4. Microstructural Observations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gia Ninh, D.; Trong Long, N.; Van Vang, T.; Hoang Ha, N.; Thanh Nguyen, C.; Viet Dao, D. A new study for aeroplane wing shapes made of boron nitride nanotubes-reinforced aluminium, Part I: Review, dynamical analyses and simulation. Compos. Struct. 2023, 303, 1–28. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Jiang, X.; Tang, H.; Wang, X.; Hu, Y. High damping and modulus if aluminium matrix composites reinforced with carbon nanotube skeleton inspired by diamond lattice. Compos. Struct. 2023, 323, 1–9. [Google Scholar] [CrossRef]
- Krstić, J.; Jovanović, J.; Gajević, S.; Miladinović, S.; Vaxevanidis, N.; Kiss, I.; Stojanović, B. Application of metal matrix nanocomposites in engineering. Adv. Eng. Lett. 2024, 3, 180–190. [Google Scholar] [CrossRef]
- Gajević, S.; Miladinović, S.; Güler, O.; Özkaya, S.; Stojanović, B. Optimalization of dry sliding wear in hot-pressed Al/B4C metal matrix composites. Materials 2024, 17, 4056. [Google Scholar] [CrossRef]
- Gajević, S.; Miladinović, S.; Ivanović, L.; Skulić, A.; Stojanović, B. A review on mechanical properties of aluminium-based metal matrix nanocomposites. Tribol. Mater. 2023, 2, 114–127. [Google Scholar] [CrossRef]
- Seikh, Z.; Sekh, M.; Mandal, G.; Sengupta, B.; Sinha, A. Metal matrix composites processed through powder metallurgy: A brief overview. J. Inst. Eng. (India) Ser. D 2024, 106, 771–778. [Google Scholar] [CrossRef]
- Bhowmik, A.; Kumar, R.; Beemkumar, N.; Kumar, A.V.; Singh, G.; Kulshreshta, A.; Mann, V.S.; Santhosh, A.J. Casting of particle reinforced metal matrix composite by liquid state fabrication method: A review. Results Eng. 2024, 24, 1–17. [Google Scholar] [CrossRef]
- Hu, Z.; Yin, H.; Li, M.; Li, J.; Zhu, H. Research and developments of ceramic-reinforced steel matrix composites—A comprehensive review. Int. J. Adv. Manuf. Technol. 2024, 131, 125–149. [Google Scholar] [CrossRef]
- Sarmah, P.; Gupta, K. Recent advancements in fabrication of metal matrix composites: A systemic review. Materials 2024, 17, 4635. [Google Scholar] [CrossRef]
- Nagaraju, S.B.; Somashekara, M.K. Wear behaviour of hybrid (boron carbide-graphite) aluminium matrix composites under high temperature. J. Eng. Appl. Sci. 2023, 70, 1–23. [Google Scholar] [CrossRef]
- Rakoczy, Ł.; Pajor, K.; Kozień, D.; Kargul, T.; Plusch, A.; Cygan, R. Analysis of the microstructure and selected properties of MMC composites produced via suction casting. In Proceedings of the 75th World Foundry Congress, October Foundry Congress, Deyang, China, 25–30 October 2024. [Google Scholar]
- May, M.; Rapakula, G.D.; Matura, P. Non-polymer matrix composite materials for space applications. Compos. Part C Open Access 2020, 3, 100057. [Google Scholar] [CrossRef]
- Patil, A.; Nartu, M.S.K.K.Y.; Ozdemir, F.; Banerjee, R.; Gupta, R.K.; Borkar, T. Strengthening effects of multi-walled carbon nanotubes reinforced nickel matrix nanocomposites. J. Alloys Compd. 2021, 876, 159981. [Google Scholar] [CrossRef]
- Nikasil Cylinder NSC Plating Reconditioning for Porsche Engines—Nikasil & NSC Cylinder Platings-Products. Available online: https://lnengineering.com/nikasil-cylindernsc-plating-reconditioning-for-porsche-engines.html (accessed on 15 September 2025).
- Nikasil Plating—Kustom Kraft Performance. Available online: https://kustom-kraft.com/nikasil-plating/ (accessed on 11 August 2024).
- Wasekar, N.P.; Bathini, L.; Ramakrishna, L.; Rao, D.S.; Padmanabham, G. Pulsed electrodeposition, mechanical properties and wear mechanism in Ni-W/SiC nanocomposite coatings used for automotive applications. Appl. Surf. Sci. 2020, 527, 146896. [Google Scholar] [CrossRef]
- Chen, W.; Yang, T.; Dong, L.; Elmasry, A.; Song, J.; Seng, N.; Elmarakbi, A.; Liu, T.; Lv, H.B.; Fu, Y.Q. Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications. Nanotechnol. Precis. Eng. 2020, 3, 189–210. [Google Scholar] [CrossRef]
- Abid, J.; Ahmad, A.; Raza, Y.; Ayub, A.; Yasir, H.; Raza, H.; Abid, M.; Murtaza, M.A.; Masood, W.; Janjua, A.B. Tailoring adhesive bonding strength: The role of mechanical abrasion and cure time in aluminium-stainless steel joints. Eng. Res. Express 2025, 7, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Tang, A.; Nasr, A.; Lin, H. The applications of nanocomposite catalysts. In Reference Module in Biofuel Production. Multifunctional Nanocomposites for Energy and Environmental Applications; Guo, Z., Chen, Y., Lu, N.L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 309–350. [Google Scholar]
- Moskalewicz, T.; Wendler, B.; Zimowski, B.; Dubiel, B.; Czyrska-Filemonowicz, A. Microstructure, micro-mechanical and tribological properties of the nc-WC/a-c nanocomposite coatings magnetron sputtered on non-hardened and oxygen hardened Ti-6Al-4V alloy. Surf. Coat. Technol. 2010, 205, 2668–2677. [Google Scholar] [CrossRef]
- Chavan, S.; Dubal, S. Nanotechnology applications in automobiles: Comprehensive review of existing data. Int. J. Mod. Trends Eng. Sci. 2020, 7, 18–22. [Google Scholar]
- Chitransh, C.S.; Saxena, S. Fracture mechanics based determination of initiation fracture toughness (KIC) of Al-MMC using experimental, analytical and numerical techniques. Int. J. Met. 2025, 1–11. [Google Scholar] [CrossRef]
- Pandey, A.K.S.; Singh, R.; Chauhan, A.K. Tribological analysis of aluminium-based MMC reinforced with silicon carbide & magnesium. Int. J. Met. 2025, 105, 1–11. [Google Scholar]
- Kowalewski, Z.L. Methods for Creep Rupture Analysis—Previous Attempts and New Challenges. In From Creep Damage Mechanics to Homogenization Methods; Altenbach, H., Matsuda, T., Okumura, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 163–198. [Google Scholar]
- Tjong, S.C.; Ma, Z.Y. High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes. Compos. Sci. Technol. 1999, 59, 1117–1125. [Google Scholar] [CrossRef]
- Whitehouse, A.F.; Winand, H.M.A. The tensile creep response of Al-SiC particulate and whisker composites. Scr. Mater. 1999, 41, 817–822. [Google Scholar] [CrossRef]
- Whitehouse, A.F.; Winand, H.M.A.; Clyne, T.W. The effect of processing route and reinforcement geometry on isothermal creep behaviour of particulate and short fibre MMCs. Mater. Sci. Eng. A 1998, 242, 57–69. [Google Scholar] [CrossRef]
- Pahutova, M.; Sklenicka, V.; Kucharova, K.; Svoboda, M. Creep resistance in magnesium alloys and their composites. Int. J. Mater. Prod. Technol. 2003, 18, 116–140. [Google Scholar] [CrossRef]
- Sklenicka, V.; Svoboda, M.; Pahutova, M.; Kucharova, K.; Langdon, T.G. Microstructural processes in creep of an AZ91magnesium-based composite and its matrix alloy. Mater. Sci. Eng. A 2001, 319–321, 741–745. [Google Scholar] [CrossRef]
- Moll, F.; Chmelik, F.; Lukac, P.; Mordike, B.L.; Kainer, K.U. Creep behaviour of a QE22-SiC particle reinforced composite investigated by acoustic emission and scanning electron microscopy. Mater. Sci. Eng. A 2000, 291, 246–249. [Google Scholar] [CrossRef]
- Winand, H.M.A.; Whitehouse, A.F.; Withers, P.J. An investigation of the isothermal creep response of Al-based composites by neutron diffraction. Mater. Sci. Eng. A 2000, 284, 103–113. [Google Scholar] [CrossRef]
- Li, Y.; Langdon, T.G. Creep behaviour of an Al-6061 metal matrix composite reinforced with alumina particulates. Acta Mater. 1997, 45, 4797–4806. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yu, J. Effect of matrix hardness on the creep properties of a 12CrMoVNb steel. Metall. Mater. Trans. A 1999, 30, 2331–2339. [Google Scholar] [CrossRef]
- Arnold, S.M.; Pindera, M.J.; Wilt, T.E. Influence of fiber architecture on the inelastic response of metal matrix composites. Int. J. Plast. 1996, 12, 507–545. [Google Scholar] [CrossRef]
- Yawny, A.; Kaustrater, G.; Skrotzki, B.; Eggeler, G. On the influence of fibre texture on the compression creep behaviour of a short fibre reinforced aluminium alloy. Scr. Mater. 2002, 46, 837–842. [Google Scholar] [CrossRef]
- Gariboldi, E.; Vedani, M. Creep damage behaviour of Al6061-Al2O3 particulate composites. Int. J. Mater. Prod. Technol. 2002, 17, 243–260. [Google Scholar]
- Requena, G.; Telfser, D.; Horist, C.; Degischer, H.P. Creep behaviour of Al6061 alloy and Al6061 metal matrix composite. Mater. Sci. Technol. 2002, 18, 515–521. [Google Scholar] [CrossRef]
- Hung, N.P.; Lim, C.S.; Ho, Y.K.; Tan, Y.C.; Tan, W.G. Cumulative creep and hot isostatic pressing of particle-reinforced metal matrix composites. J. Mater. Process. 2000, 101, 104–109. [Google Scholar] [CrossRef]
- Pyzalla, A.; Camin, B.; Buslaps, T.D.; Michiel, M.; Kaminski, H.; Kottar, A.; Pernack, A.; Reimer, W. Simultaneous tomography and diffraction analysis of creep damage. Science 2005, 308, 92–95. [Google Scholar] [CrossRef]
- Pandey, A.B.; Mishra, R.S.; Mahajan, Y.R. Creep fracture in Al-SiC metal-matrix composites. J. Mater. Sci. 1993, 28, 2943–2949. [Google Scholar] [CrossRef]
- Nieh, T.G.; Xia, K.; Langdon, T.G. Mechanical properties of discontinuous SiC reinforced aluminium composites at elevated temperatures. J. Eng. Mater. Technol. 1988, 110, 77–82. [Google Scholar] [CrossRef]
- Barth, E.P.; Morton, J.T.; Tien, J.K.; Lian, P.K.; Gungor, M.N. Fundamental relations between microstructure and mechanical properties of metal matrix composites. Miner. Met. Mater. Soc. Warrendale PA 1990, 42, 839. [Google Scholar]
- Spigarelli, S.; Cabibbo, M.; Evangelista, E.; Langdon, T.G. Creep properties of an Al-2024 composite reinforced with SiC particulates. Mater. Sci. Eng. A 2002, 328, 39–47. [Google Scholar] [CrossRef]
- Li, Y.; Langton, T.G. A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Mater. 1999, 47, 3395–3403. [Google Scholar] [CrossRef]
- Requena, G.; Bauer, B.; Degischer, H.P.; Lieblich, M. The effect of ball milling and wet blending on the creep behavior of a particle reinforced 2124 Al-alloy. Int. J. Mater. Res. 2011, 102, 982–992. [Google Scholar] [CrossRef]
- Fernández, R.; González-Doncel, G. Additivity of reinforcing mechanisms during creep of metal matrix composites: Role of the microstructure and the processing route. J. Alloys Compd. 2009, 475, 202–206. [Google Scholar] [CrossRef]
- Kim, W.J.; Yeon, J.H.; Shin, D.H.; Hong, S.H. Deformation behavior of powder-metallurgy processed high-strain-rate superplastic 20%SiCp:2124 Al composite in a wide range of temperature. Mater. Sci. Eng. A 1999, 269, 142–151. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Tjong, S.C. The high-temperature creep behavior of 2124 aluminum alloys with and without particulate and SiC-whisker reinforcement. Compos. Sci. Technol. 1999, 59, 737–747. [Google Scholar] [CrossRef]
- Cadek, J.; Pauhutova, M.; Sustek, V. Creep behavior of a 2124 Al alloy reinforced by 20 vol.% silicon carbide particulates. Mater. Sci. Eng. A 1998, 246, 252–264. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y.; Mohamed, F.A. Creep and substructure in 5 vol.% SiC–2124 Al composite. Mater. Sci. Eng. A 2002, 332, 330–342. [Google Scholar] [CrossRef]
- Ryu, H.J.; Sohn, W.H.; Hong, S.H. Effect of SiC volume fraction on creep behavior of SiCp/2124Al metal matrix composite. Mater. Sci. Res. Int. 1999, 5, 280–284. [Google Scholar] [CrossRef]
- Huang, L.; Kai, X.; Wang, T.; Zhao, P.; Qian, W.; Guan, C.; Gao, X.; Cao, Z.; Zhao, Y. Enhanced creep resistance and microstructure in 7055 Al alloy by in situ (Al2O3 + ZrB2) nanoparticles and Al3(Er, Zr). Mater. Charact. 2024, 216, 1–19. [Google Scholar] [CrossRef]
- Shan, L.; Tan, C.Y.; Shen, X.; Ramesh, S.; Kolahchi, R.; Hajmohammad, M.H.; Rajak, D.K. Creep behaviour of A356 aluminum alloy reinforced with multi-walled carbon nanotubes by stir casting. Materials 2022, 15, 8959. [Google Scholar] [CrossRef]
- Wang, T.; Kai, X.; Huang, L.; Peng, Q.; Sun, K.; Zhao, Y. High-temperature creep behavior and creep mechanism of in situ (ZrB2 + Al2O3)np/7055 Al nanocomposites. J. Alloys Compd. 2024, 981, 1–16. [Google Scholar] [CrossRef]
- Rutecka, A.; Kursa, M.; Pietrzak, K.; Kowalczyk-Gajewska, K.; Makowska, K.; Wyszkowski, M. Damage evolution in AA2124/SiC metal matrix composites under tension with consecutive unloadings. Arch. Civ. Mech. Eng. 2020, 20, 1–18. [Google Scholar] [CrossRef]
- Rutecka, A. Modern metal matrix composites (MMC) AA2124/SiC under tension, fatigue and creep loading—first step to detection and estimation of damage. In Wybrane Zagadnienia Współczesnej Inżynierii Lądowej; Monografia Wydziału Inżynierii Lądowej; Gilewski, W.J., Ed.; WUT Publishing House: Warsaw, Poland, 2018; pp. 155–170. (In Polish) [Google Scholar]
- Rutecka, A.; Kowalewski, Z.L.; Pietrzak, K.; Dietrich, L.; Rehm, W. Creep and Low Cycle Fatigue Investigations of Light Aluminium Alloys for Engine Cylinder Heads. Strain 2011, 47, 374–381. [Google Scholar] [CrossRef]
Specimen | Temperature [°C] | Stress [MPa] | Test Time [h] | Strain [%] | Minimum Creep Rate [s−1] | Test End Notes |
---|---|---|---|---|---|---|
Specimen 1 | 300 | 50 | 1180 | 0.65 | 6.5 × 10−10 | Test stopped |
Specimen 2 | 300 | 55 | 195 | 1.5 | 1.4 × 10−8 | Test stopped |
Specimen 3 | 300 | 55 | 198 | 1.7 | 1.3 × 10−8 | Test stopped |
Specimen 4 | 300 | 39/60 | (118 + 3) | 2 | 1.2 × 10−6 (60 MPa) | Test stopped |
Specimen No. | Temperature [°C] | Stress [MPa] | Test Time [h] | Strain [%] | Minimum Creep Rate [s−1] | Test End Notes |
---|---|---|---|---|---|---|
5 | 300 | 65 | 479 | 0.44 | 5.3 × 10−11 | Test stopped |
6 | 300 | 70 | 1645 | 0.9 | 3.5 × 10−10 | Until rupture |
6a | 300 | 70 | 530 | 0.78 | 5.3 × 10−10 | Test stopped |
7 | 300 | 71 | 1591 | 1.16 | 6.9 × 10−10 | Until rupture |
8 | 300 | 72 | 0.4 | 2 | 5.3 × 10−6 | Test stopped |
9 | 300 | 75 | 0.4 | 26 | - | Test stopped |
10 | 300 | 75 | 0.2 | 2 | - | Test stopped |
Specimen No. | Temperature [°C] | Stress [MPa] | Test Time [h] | Strain [%] | Minimum Creep Rate [s−1] | Test End Notes |
---|---|---|---|---|---|---|
11 | 300 | 85 | 1100 | 0.76 | 6.4 × 10−10 | Until rupture |
12 | 300 | 90 | 470 | 0.76 | 1.3 × 10−9 | Until rupture |
13 | 300 | 91 | 649 | 1.04 | 1.3 × 10−9 | Until rupture |
13a | 300 | 91 | 624 | 0.8 | 7.5 × 10−10 | Test stopped |
14 | 300 | 92 | 0.096 | 1.89 | - | Test stopped |
Figures Number | The Size of Reinforcement | Measurement Conditions | Void Density N [1/μm2] | Volume Fraction of Voids VV [%] | Mean Feret Diameter of Void Fśr [μm] | Particle Fragmentation P [1/μm2] |
---|---|---|---|---|---|---|
Figure 5. | 3 μm AA2124 + 17 vol.% SiC specimen 1 | 300 °C 50 MPa | 0.00100 | 0.41664 | 2.08333 | 0.00031 |
Figure 6. | 3 μm AA2124 + 17 vol.% SiC specimen 3 | 300 °C 55 MPa | 0.00150 | 0.55556 | 1.46755 | 0.00056 |
Figure 7. | 0.6 μm AA2124 + 17 vol.% SiC specimen 6 | 300 °C 70 MPa | 0.00088 | 0.69444 | 2.35294 | - |
Figure 8. | 0.6 μm AA2124 + 17 vol.% SiC specimen 7 | 300 °C 71 MPa | 0.00106 | 0.90278 | 3.53992 | - |
Figure 9. | 0.6 μm AA2124 + 17 vol.% SiC specimen 6a | 300 °C 70 MPa | 0.00194 | 0.69444 | 2.66386 | - |
Figure 10. | 0.6 μm AA2124 + 25 vol.% SiC specimen 4 | 300 °C 90 MPa | 0.00088 | 0.45139 | 2.50000 | - |
Figure 11. | 0.6 μm AA2124 + 25 vol.% SiC specimen 13 | 300 °C 91 MPa | 0.00463 | 0.52083 | 2.82250 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutecka, A.; Makowska, K.; Kowalewski, Z.L. Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep. Materials 2025, 18, 4495. https://doi.org/10.3390/ma18194495
Rutecka A, Makowska K, Kowalewski ZL. Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep. Materials. 2025; 18(19):4495. https://doi.org/10.3390/ma18194495
Chicago/Turabian StyleRutecka, Agnieszka, Katarzyna Makowska, and Zbigniew Ludwik Kowalewski. 2025. "Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep" Materials 18, no. 19: 4495. https://doi.org/10.3390/ma18194495
APA StyleRutecka, A., Makowska, K., & Kowalewski, Z. L. (2025). Mechanical and Microstructural Investigations of AA2124/SiC Metal Matrix Composites After Creep. Materials, 18(19), 4495. https://doi.org/10.3390/ma18194495