A Composition Design Strategy for Refractory High-Entropy Alloys
Abstract
1. Introduction
2. Composition Design Strategy
- (1)
- The ROM method
- (2)
- The Johnson method
3. Experimental Methods
4. Results and Discussion
4.1. Elastic Modulus Experimentally Measured by Tension and IEV
4.2. Prediction of Elastic Modulus from Composition
4.3. Experimental Verification of the Strategy
4.4. Limitations and Further Discussion
5. Conclusions
- (1)
- The Young’s modulus of the NbTaTiV and HfNbTaTiZr HEAs was measured by both the tensile test and IEV test. No significant differences were found between the two test methods. The shear modulus and Poisson’s ratio were also measured with the IEV test for these two alloys and the Al0.5Mo0.5NbTa0.5TiZr HEA.
- (2)
- According to the ROM, the elastic modulus values of 132 HEAs were estimated based on their compositions. The estimated elastic modulus was compared with the experimental or simulated values in literature and this study, and the results indicate that the average values of the ROM can estimate the elastic modulus of HEAs.
- (3)
- A composition design strategy is proposed based on the correlations between compositions and properties, including Young’s modulus, VEC, density, and atomic size difference. Property maps can be predicted and plotted, and the optimal composition with desired properties can be reached.
- (4)
- According to the composition design strategy, a new HEA with the composition of Nb15Mo2.5Ta40V40W2.5 was designed. Further tests of the as-cast new alloy, including mechanical property measurement and structure characterization, suggest that this HEA has a BCC single phase and much higher compressive strength (2550 ± 75 MPa) and plasticity (35.7 ± 0.9%) than the equimolar NbMoTaVW alloy. The experimental results validate the rationality of the design strategy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HEAs | High-entropy alloys. |
MPEAs | Multiple-principal element alloys. |
CALPHAD | Calculation of phase diagram. |
BCC | Body-centered cubic. |
VEC | Valence electron concentration. |
RHEAs | Refractory high-entropy alloys. |
IEV | Impulse excitation of vibration. |
ROM | Rule of mixture. |
DOS | Density of states. |
XRD | X-ray diffraction. |
BSE | Backscattered electron. |
SEM | Scanning electron microscope. |
Eavg | Average modulus. |
References
- Miracle, D.B.; Senkov, O.N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-Entropy Alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Ren, X.; Li, Y.; Qi, Y.; Wang, B. Review on Preparation Technology and Properties of Refractory High Entropy Alloys. Materials 2022, 15, 2931. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Maresca, F.; Feng, R.; Chou, Y.; Ungar, T.; Widom, M.; An, K.; Poplawsky, J.D.; Chou, Y.-C.; Liaw, P.K.; et al. Strength Can Be Controlled by Edge Dislocations in Refractory High-Entropy Alloys. Nat. Commun. 2021, 12, 5474. [Google Scholar] [CrossRef]
- Wu, S.J.; Wang, X.D.; Lu, J.T.; Qu, R.T.; Zhang, Z.F. Room-Temperature Mechanical Properties of V20Nb20Mo20Ta20W20 High-Entropy Alloy. Adv. Eng. Mater. 2018, 20, 1800028. [Google Scholar] [CrossRef]
- Fan, X.J.; Qu, R.T.; Zhang, Z.F. Remarkably High Fracture Toughness of HfNbTaTiZr Refractory High-Entropy Alloy. J. Mater. Sci. Technol. 2022, 123, 70–77. [Google Scholar] [CrossRef]
- Qu, R.; Wu, S.; Volkert, C.A.; Zhang, Z.; Liu, F. Significantly Improved Strength and Plasticity of a Refractory High-Entropy Alloy at Small Length Scale. Mater. Sci. Eng. A 2023, 867, 144729. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Cheng, X.; Wu, C.; Cheng, B.; Xu, Z. The Microstructure and Mechanical Properties of Refractory High-Entropy Alloys with High Plasticity. Materials 2018, 11, 208. [Google Scholar] [CrossRef]
- Liu, X.; Song, K.; Kou, Z.; Gong, J.; Chen, X.; Gao, Q.; Sun, H.; Liu, P.; Qu, R.; Hu, L.; et al. Synergistic Grain Boundary Engineering for Achieving Strength-Ductility Balance in Ultrafine-Grained High-Cr-Bearing Multicomponent Alloys. Int. J. Plast. 2024, 177, 103992. [Google Scholar] [CrossRef]
- Huang, L.; Lin, W.; Zhang, Y.; Feng, D.; Li, Y.; Chen, X.; Niu, K.; Liu, F. Generalized Stability Criterion for Exploiting Optimized Mechanical Properties by a General Correlation between Phase Transformations and Plastic Deformations. Acta Mater. 2020, 201, 167–181. [Google Scholar] [CrossRef]
- He, Y.; Song, S.; Du, J.; Peng, H.; Ding, Z.; Hou, H.; Huang, L.; Liu, Y.; Liu, F. Thermo-Kinetic Connectivity by Integrating Thermo-Kinetic Correlation and Generalized Stability. J. Mater. Sci. Technol. 2022, 127, 225–235. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, H.; Huang, L.; Liu, F. Materials Design by Generalized Stability. J. Mater. Sci. Technol. 2023, 147, 153–164. [Google Scholar] [CrossRef]
- Huo, P.D.; Huang, L.K.; Song, K.X.; Qin, G.; Liu, F. High-Density Metastable Annealing Twin Boundaries-Induced Extraordinary Strain Hardening in Ultrafine-Grained High-Entropy Alloy. Acta Mater. 2025, 295, 121205. [Google Scholar] [CrossRef]
- Liu, X.; Kou, Z.; Qu, R.; Song, W.; Gu, Y.; Zhou, C.; Gao, Q.; Zhang, J.; Cao, C.; Song, K.; et al. Accelerating Matrix/Boundary Precipitations to Explore High-Strength and High-Ductile Co34Cr32Ni27Al3.5Ti3.5 Multicomponent Alloys through Hot Extrusion and Annealing. J. Mater. Sci. Technol. 2023, 143, 62–83. [Google Scholar] [CrossRef]
- Guo, C.; Xing, Y.; Wu, P.; Qu, R.; Song, K.; Liu, F. Super Tensile Ductility in an As-Cast TiVNbTa Refractory High-Entropy Alloy. Prog. Nat. Sci. Mater. Int. 2024, 34, 1076–1084. [Google Scholar] [CrossRef]
- Huang, X.; Qu, R.; Ren, F.; Guo, C.; Xing, Y.; Ma, H.; Lin, Y.; Liu, J.; Song, K.; Liu, F. New Lightweight and Super-Hard Refractory High-Entropy Alloys Developed by a High-Throughput Method. J. Mater. Res. Technol. 2024, 31, 506–511. [Google Scholar] [CrossRef]
- An, Z.; Li, A.; Mao, S.; Yang, T.; Zhu, L.; Wang, R.; Wu, Z.; Zhang, B.; Shao, R.; Jiang, C.; et al. Negative Mixing Enthalpy Solid Solutions Deliver High Strength and Ductility. Nature 2024, 625, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qu, R.; Ma, H.; Song, K.; Liu, F. Simultaneously Enhanced Strength and Fracture Resistance in HfNbTaTiZr Refractory High-Entropy Alloy at Higher Strain Rate. Acta Metall. Sin. 2025, 38, 529–541. [Google Scholar] [CrossRef]
- Hu, Y.; Qu, R.; Liu, F. Property Maps of Single-Phase Refractory High-Entropy Alloys. Mater. Today Commun. 2025, 48, 113444. [Google Scholar] [CrossRef]
- Liu, F. Nucleation/Growth Design by Thermo-Kinetic Partition. J. Mater. Sci. Technol. 2023, 155, 72–81. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.; Fan, W.; Lu, Y.; Wang, T.; Li, T.; Liaw, P.K. CALPHAD-Aided Design for Superior Thermal Stability and Mechanical Behavior in a TiZrHfNb Refractory High-Entropy Alloy. Acta Mater. 2023, 246, 118728. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Huang, Y.; Xie, L.; Xu, Q.; Zhao, T. Effect of Ti Content on the Microstructure and Corrosion Resistance of CoCrFeNiTix High Entropy Alloys Prepared by Laser Cladding. Materials 2020, 13, 2209. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, H.; Ding, X.; Sun, J. Rapid Design and Screen High Strength U-Based High-Entropy Alloys from First-Principles Calculations. J. Mater. Sci. Technol. 2024, 179, 174–186. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Hu, Q.; Ding, X.; Sun, J. First-Principles Design of High Strength Refractory High-Entropy Alloys. J. Mater. Res. Technol. 2024, 29, 3420–3436. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai, L.; Lookman, T.; Su, Y. Machine Learning Assisted Design of High Entropy Alloys with Desired Property. Acta Mater. 2019, 170, 109–117. [Google Scholar] [CrossRef]
- Klimenko, D.; Stepanov, N.; Li, J.; Fang, Q.; Zherebtsov, S. Machine Learning-Based Strength Prediction for Refractory High-Entropy Alloys of the Al-Cr-Nb-Ti-V-Zr System. Materials 2021, 14, 7213. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Pei, Z. Machine Learning for High-Entropy Alloys: Progress, Challenges and Opportunities. Prog. Mater. Sci. 2023, 131, 101018. [Google Scholar] [CrossRef]
- Sohail, Y.; Zhang, C.; Xue, D.; Zhang, J.; Zhang, D.; Gao, S.; Yang, Y.; Fan, X.; Zhang, H.; Liu, G.; et al. Machine-Learning Design of Ductile FeNiCoAlTa Alloys with High Strength. Nature 2025, 643, 119–124. [Google Scholar] [CrossRef]
- Wang, W.H. The Elastic Properties, Elastic Models and Elastic Perspectives of Metallic Glasses. Prog. Mater. Sci. 2012, 57, 487–656. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Wang, R.F.; Qu, R.T.; Zhang, Z.F. Precisely Predicting and Designing the Elasticity of Metallic Glasses. J. Appl. Phys. 2014, 115, 203513. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, Z.F. Strengthening and Toughening Metallic Glasses: The Elastic Perspectives and Opportunities. J. Appl. Phys. 2014, 115, 163505. [Google Scholar] [CrossRef]
- Qu, R.T.; Zhang, Z.F. A Universal Fracture Criterion for High-Strength Materials. Sci. Rep. 2013, 3, 1117. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Eckert, J. Unified Tensile Fracture Criterion. Phys. Rev. Lett. 2005, 94, 094301. [Google Scholar] [CrossRef]
- Wu, S.J.; Liu, Z.Q.; Qu, R.T.; Zhang, Z.F. Designing Metallic Glasses with Optimal Combinations of Glass-Forming Ability and Mechanical Properties. J. Mater. Sci. Technol. 2021, 67, 254–264. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Sheikh, S.; Shafeie, S.; Hu, Q.; Ahlstrom, J.; Persson, C.; Vesely, J.; Zyka, J.; Klement, U.; Guo, S. Alloy Design for Intrinsically Ductile Refractory High-Entropy Alloys. J. Appl. Phys. 2016, 120, 164902. [Google Scholar] [CrossRef]
- Yang, X. Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Zhang, Y.; Greer, A.L. Correlations for Predicting Plasticity or Brittleness of Metallic Glasses. J. Alloys Compd. 2007, 434, 2–5. [Google Scholar] [CrossRef]
- Johnson, D.D.; Singh, P.; Smirnov, A.V.; Argibay, N. Universal Maximum Strength of Solid Metals and Alloys. Phys. Rev. Lett. 2023, 130, 166101. [Google Scholar] [CrossRef]
- MacMillan, N.H. The Theoretical Strength of Solids. J. Mater. Sci. 1972, 7, 239–254. [Google Scholar] [CrossRef]
- Nagasako, N.; Jahnátek, M.; Asahi, R.; Hafner, J. Anomalies in the Response of V, Nb, and Ta to Tensile and Shear Loading: Ab Initio Density Functional Theory Calculations. Phys. Rev. B 2010, 81, 094108. [Google Scholar] [CrossRef]
- Qi, L.; Chrzan, D.C. Tuning Ideal Tensile Strengths and Intrinsic Ductility of Bcc Refractory Alloys. Phys. Rev. Lett. 2014, 112, 115503. [Google Scholar] [CrossRef]
- Chan, K.S. A Computational Approach to Designing Ductile Nb-Ti-Cr-Al Solid-Solution Alloys. Metall. Mater. Trans. A 2001, 32, 2475–2487. [Google Scholar] [CrossRef]
- Mak, E.; Yin, B.; Curtin, W.A. A Ductility Criterion for Bcc High Entropy Alloys. J. Mech. Phys. Solids 2021, 152, 104389. [Google Scholar] [CrossRef]
- Yao, H.W.; Qiao, J.W.; Hawk, J.A.; Zhou, H.F.; Chen, M.W.; Gao, M.C. Mechanical Properties of Refractory High-Entropy Alloys: Experiments and Modeling. J. Alloys Compd. 2017, 696, 1139–1150. [Google Scholar] [CrossRef]
- Raggio, L.I.; Etcheverry, J.; Sánchez, G.; Bonadeo, N. Error Analysis of the Impulse Excitation of Vibration Measurement of Acoustic Velocities in Steel Samples. Phys. Procedia 2010, 3, 297–303. [Google Scholar] [CrossRef]
- Senkov, O.N.; Jensen, J.K.; Pilchak, A.L.; Miracle, D.B.; Fraser, H.L. Compositional Variation Effects on the Microstructure and Properties of a Refractory High-Entropy Superalloy AlMo0.5NbTa0.5TiZr. Mater. Des. 2018, 139, 498–511. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.-P. Development and Exploration of Refractory High Entropy Alloys—A Review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Miracle, D.B.; Woodward, C. Mechanical Properties of Low-Density, Refractory Multi-Principal Element Alloys of the Cr–Nb–Ti–V–Zr System. Mater. Sci. Eng. A 2013, 565, 51–62. [Google Scholar] [CrossRef]
- Estrada-Guel, I.; Rodríguez-González, C.A.; Hernández-Paz, J.; Jimenez, O.; Santos-Beltran, A.; Martínez-Sánchez, R.; Romero-Romero, M.; Gómez-Esparza, C.D. Phase Composition and Its Effect on the Mechanical Performance of an AlCoCrFeNiTi High-Entropy Alloy. Mater. Lett. 2022, 316, 132035. [Google Scholar] [CrossRef]
- Jadhav, M.; Singh, S.; Srivastava, M.; Chakradhar, R.P.; Panigrahi, B.B. Effect of Minute Element Addition on the Oxidation Resistance of FeCoCrNiAl and FeCoCrNi2Al High Entropy Alloy. Adv. Powder Technol. 2022, 33, 103410. [Google Scholar] [CrossRef]
- Ji, G.; Zhou, Z.; Meng, F.; Yang, X.; Sheng, R.; Qiao, J.; Liaw, P.K.; Li, M.; Jiang, L.; Chen, S.; et al. Effect of Zr Addition on the Local Structure and Mechanical Properties of Ti–Ta–Nb–Zr Refractory High-Entropy Alloys. J. Mater. Res. Technol. 2022, 19, 4428–4438. [Google Scholar] [CrossRef]
- Li-Yan, L.; Shu-nan, C.; Yi, L.; Gang, J.; Hai-Dong, C.; Yun-Jie, J.; Chang-Jiu, L.; Cheng-Xin, L. Microstructure and Mechanical Properties of Lightweight Al CrNbTiV(x = 0.2, 0.5, 0.8) Refractory High Entropy Alloys. Int. J. Refract. Met. Hard Mater. 2022, 104, 105784. [Google Scholar] [CrossRef]
- Roy, A.; Babuska, T.; Krick, B.; Balasubramanian, G. Machine Learned Feature Identification for Predicting Phase and Young’s Modulus of Low-, Medium- and High-Entropy Alloys. Scr. Mater. 2020, 185, 152–158. [Google Scholar] [CrossRef]
- Schönecker, S.; Li, X.; Wei, D.; Nozaki, S.; Kato, H.; Vitos, L.; Li, X. Harnessing Elastic Anisotropy to Achieve Low-Modulus Refractory High-Entropy Alloys for Biomedical Applications. Mater. Des. 2022, 215, 110430. [Google Scholar] [CrossRef]
- Tian, F.; Delczeg, L.; Chen, N.; Varga, L.K.; Shen, J.; Vitos, L. Structural Stability of NiCoFeCrAlx High-Entropy Alloy from Ab Initio Theory. Phys. Rev. B 2013, 88, 085128. [Google Scholar] [CrossRef]
- Tian, F.; Varga, L.K.; Chen, N.; Delczeg, L.; Vitos, L. Ab Initio Investigation of High-Entropy Alloys of 3d Elements. Phys. Rev. B 2013, 87, 075144. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C. Effect of Aluminum on the Microstructure and Properties of Two Refractory High-Entropy Alloys. Acta Mater. 2014, 68, 214–228. [Google Scholar] [CrossRef]
- Lilensten, L.; Couzinié, J.-P.; Bourgon, J.; Perrière, L.; Dirras, G.; Prima, F.; Guillot, I. Design and Tensile Properties of a Bcc Ti-Rich High-Entropy Alloy with Transformation-Induced Plasticity. Mater. Res. Lett. 2017, 5, 110–116. [Google Scholar] [CrossRef]
- Haglund, A.; Koehler, M.; Catoor, D.; George, E.P.; Keppens, V. Polycrystalline Elastic Moduli of a High-Entropy Alloy at Cryogenic Temperatures. Intermetallics 2015, 58, 62–64. [Google Scholar] [CrossRef]
- Dirras, G.; Lilensten, L.; Djemia, P.; Laurent-Brocq, M.; Tingaud, D.; Couzinié, J.-P.; Perrière, L.; Chauveau, T.; Guillot, I. Elastic and Plastic Properties of As-Cast Equimolar TiHfZrTaNb High-Entropy Alloy. Mater. Sci. Eng. A 2016, 654, 30–38. [Google Scholar] [CrossRef]
- Ye, Y.X.; Musico, B.L.; Lu, Z.Z.; Xu, L.B.; Lei, Z.F.; Keppens, V.; Xu, H.X.; Nieh, T.G. Evaluating Elastic Properties of a Body-Centered Cubic NbHfZrTi High-Entropy Alloy—A Direct Comparison between Experiments and Ab Initio Calculations. Intermetallics 2019, 109, 167–173. [Google Scholar] [CrossRef]
- Han, Z.D.; Chen, N.; Zhao, S.F.; Fan, L.W.; Yang, G.N.; Shao, Y.; Yao, K.F. Effect of Ti Additions on Mechanical Properties of NbMoTaW and VNbMoTaW Refractory High Entropy Alloys. Intermetallics 2017, 84, 153–157. [Google Scholar] [CrossRef]
- Moravcik, I.; Cizek, J.; Zapletal, J.; Kovacova, Z.; Vesely, J.; Minarik, P.; Kitzmantel, M.; Neubauer, E.; Dlouhy, I. Microstructure and Mechanical Properties of Ni1,5Co1,5CrFeTi0,5 High Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering. Mater. Des. 2017, 119, 141–150. [Google Scholar] [CrossRef]
- Laplanche, G.; Gadaud, P.; Perrière, L.; Guillot, I.; Couzinié, J.P. Temperature Dependence of Elastic Moduli in a Refractory HfNbTaTiZr High-Entropy Alloy. J. Alloys Compd. 2019, 799, 538–545. [Google Scholar] [CrossRef]
- Zeng, X.K.; Li, Y.T.; Zhang, X.D.; Liu, M.; Ye, J.Z.; Qiu, X.L.; Jiang, X.; Leng, Y.X. Effect of Bias Voltage on the Structure and Properties of CuNiTiNbCr Dual-Phase High Entropy Alloy Films. J. Alloys Compd. 2023, 931, 167371. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, H.; Liu, B.; Liu, Y.; Guo, S.; Jiao, Z.B.; Baker, I. A Comparative Study on Microstructure, Nanomechanical and Corrosion Behaviors of AlCoCuFeNi High Entropy Alloys Fabricated by Selective Laser Melting and Laser Metal Deposition. J. Mater. Sci. Technol. 2022, 131, 221–230. [Google Scholar] [CrossRef]
- Moravcikova-Gouvea, L.; Moravcik, I.; Omasta, M.; Veselý, J.; Cizek, J.; Minárik, P.; Cupera, J.; Záděra, A.; Jan, V.; Dlouhy, I. High-Strength Al0.2Co1.5CrFeNi1.5Ti High-Entropy Alloy Produced by Powder Metallurgy and Casting: A Comparison of Microstructures, Mechanical and Tribological Properties. Mater. Charact. 2020, 159, 110046. [Google Scholar] [CrossRef]
- Kang, B.; Kong, T.; Ryu, H.J.; Hong, S.H. Superior Mechanical Properties and Strengthening Mechanisms of Lightweight AlxCrNbVMo Refractory High-Entropy Alloys (x = 0, 0.5, 1.0) Fabricated by the Powder Metallurgy Process. J. Mater. Sci. Technol. 2021, 69, 32–41. [Google Scholar] [CrossRef]
- Kang, B.; Kong, T.; Dan, N.H.; Phuong, D.D.; Ryu, H.J.; Hong, S.H. Effect of Boron Addition on the Microstructure and Mechanical Properties of Refractory Al0.1CrNbVMo High-Entropy Alloy. Int. J. Refract. Met. Hard Mater. 2021, 100, 105636. [Google Scholar] [CrossRef]
- Bachani, S.K.; Wang, C.-J.; Lou, B.-S.; Chang, L.-C.; Lee, J.-W. Microstructural Characterization, Mechanical Property and Corrosion Behavior of VNbMoTaWAl Refractory High Entropy Alloy Coatings: Effect of Al Content. Surf. Coat. Technol. 2020, 403, 126351. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Fan, J.; Yu, P.; Li, G. Anomalous Microstructure and Excellent Mechanical Behaviors of (CoCrFeNi) Cr Al High-Entropy Alloy Induced by Cr and Al Addition. Mater. Sci. Eng. A 2019, 752, 63–74. [Google Scholar] [CrossRef]
- Raman, L.; Anupam, A.; Karthick, G.; Berndt, C.C.; Ang, A.S.M.; Narayana Murty, S.V.S.; Fabijanic, D.; Murty, B.S.; Kottada, R.S. Strengthening Mechanisms in CrMoNbTiW Refractory High Entropy Alloy. Mater. Sci. Eng. A 2021, 819, 141503. [Google Scholar] [CrossRef]
- Liu, J.; Scales, R.J.; Li, B.-S.; Goode, M.; Young, B.A.; Hu, J.; Wilkinson, A.J.; Armstrong, D.E.J. Controlling Microstructure and Mechanical Properties of Ti-V-Cr-Nb-Ta Refractory High Entropy Alloys through Heat Treatments. J. Alloys Compd. 2023, 932, 167651. [Google Scholar] [CrossRef]
- Podolskiy, A.V.; Tabachnikova, E.D.; Voloschuk, V.V.; Gorban, V.F.; Krapivka, N.A.; Firstov, S.A. Mechanical Properties and Thermally Activated Plasticity of the Ti30Zr25Hf15Nb20Ta10 High Entropy Alloy at Temperatures 4.2–350 K. Mater. Sci. Eng. A 2018, 710, 136–141. [Google Scholar] [CrossRef]
- Liao, W.-B.; Xu, C.-H.; Wang, T.-L.; Feng, C.-S.; Khan, M.A.; Yasin, G. Oxidation Influences on the Microstructure and Mechanical Properties of W–Nb–Mo–Ta–V–O Refractory High-Entropy Alloy Films. Vacuum 2023, 207, 111586. [Google Scholar] [CrossRef]
- Kalali, D.G.; Antharam, S.; Hasan, M.; Karthik, P.S.; Phani, P.S.; Bhanu Sankara Rao, K.; Rajulapati, K.V. On the Origins of Ultra-High Hardness and Strain Gradient Plasticity in Multi-Phase Nanocrystalline MoNbTaTiW Based Refractory High-Entropy Alloy. Mater. Sci. Eng. A 2021, 812, 141098. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, H.; Liu, Y.; Zhang, X.; Jiang, Y.; Dong, T. An Ab Initio and Experimental Studies of the Structure, Mechanical Parameters and State Density on the Refractory High-Entropy Alloy Systems. J. Alloys Compd. 2017, 714, 668–680. [Google Scholar] [CrossRef]
- Cao, P.; Ni, X.; Tian, F.; Varga, L.K.; Vitos, L. Ab Initio Study of Alx MoNbTiV High-Entropy Alloys. J. Phys. Condens. Matter 2015, 27, 075401. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Tian, F.; Wang, Y. Elastic and Thermal Properties of Refractory High-Entropy Alloys from First-Principles Calculations. Comp. Mater. Sci. 2017, 128, 185–190. [Google Scholar] [CrossRef]
- Qiu, S.; Chen, S.-M.; Naihua, N.; Zhou, J.; Hu, Q.-M.; Sun, Z. Structural Stability and Mechanical Properties of B2 Ordered Refractory AlNbTiVZr High Entropy Alloys. J. Alloys Compd. 2021, 886, 161289. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, G.; Zhang, B.; Yan, M.; Fu, Y. A Theoretical Study of the Stability, Mechanical and Thermal Properties of AlNiCuCo Equimolar High Entropy Alloy. Phys. Lett. A 2020, 384, 126797. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, G. Predicting Mechanical Properties of High Entropy Alloys with Face Centered Cubic Structure from First Principles Calculations. Mater. Today Commun. 2022, 32, 104059. [Google Scholar] [CrossRef]
- Zaddach, A.J.; Niu, C.; Koch, C.C.; Irving, D.L. Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. JOM 2013, 65, 1780–1789. [Google Scholar] [CrossRef]
- Sun, Z.H.; Zhang, J.; Xin, G.X.; Xie, L.; Yang, L.C.; Peng, Q. Tensile Mechanical Properties of CoCrFeNiTiAl High Entropy Alloy via Molecular Dynamics Simulations. Intermetallics 2022, 142, 107444. [Google Scholar] [CrossRef]
- Tian, F.; Varga, L.K.; Vitos, L. Predicting Single Phase CrMoWX High Entropy Alloys from Empirical Relations in Combination with First-Principles Calculations. Intermetallics 2017, 83, 9–16. [Google Scholar] [CrossRef]
- Fazakas, É.; Zadorozhnyy, V.; Varga, L.K.; Inoue, A.; Louzguine-Luzgin, D.V.; Tian, F.; Vitos, L. Experimental and Theoretical Study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) Refractory High-Entropy Alloys. Int. J. Refract. Met. Hard Mater. 2014, 47, 131–138. [Google Scholar] [CrossRef]
- Tong, Y.; Bai, L.; Liang, X.; Chen, Y.; Zhang, Z.; Liu, J.; Li, Y.; Hu, Y. Influence of Alloying Elements on Mechanical and Electronic Properties of NbMoTaWX (X = Cr, Zr, V, Hf and Re) Refractory High Entropy Alloys. Intermetallics 2020, 126, 106928. [Google Scholar] [CrossRef]
- Li, W.; Xiong, K.; Yang, L.; Zhang, S.; He, J.; Wang, Y.; Mao, Y. An Ambient Ductile TiHfVNbTa Refractory High-Entropy Alloy: Cold Rolling, Mechanical Properties, Lattice Distortion, and First-Principles Prediction. Mater. Sci. Eng. A 2022, 856, 144046. [Google Scholar] [CrossRef]
- Hu, Y.L.; Bai, L.H.; Tong, Y.G.; Deng, D.Y.; Liang, X.B.; Zhang, J.; Li, Y.J.; Chen, Y.X. First-Principle Calculation Investigation of NbMoTaW Based Refractory High Entropy Alloys. J. Alloys Compd. 2020, 827, 153963. [Google Scholar] [CrossRef]
- Bai, L.; Hu, Y.; Liang, X.; Tong, Y.; Liu, J.; Zhang, Z.; Li, Y.; Zhang, J. Titanium Alloying Enhancement of Mechanical Properties of NbTaMoW Refractory High-Entropy Alloy: First-Principles and Experiments Perspective. J. Alloys Compd. 2021, 857, 157542. [Google Scholar] [CrossRef]
- Liao, M.; Liu, Y.; Min, L.; Lai, Z.; Han, T.; Yang, D.; Zhu, J. Alloying Effect on Phase Stability, Elastic and Thermodynamic Properties of Nb-Ti-V-Zr High Entropy Alloy. Intermetallics 2018, 101, 152–164. [Google Scholar] [CrossRef]
- Lu, K. The Future of Metals. Science 2010, 328, 319–320. [Google Scholar] [CrossRef]
- Pharr, G.M.; Herbert, E.G.; Gao, Y. The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations. Annu. Rev. Mater. Res. 2010, 40, 271–292. [Google Scholar] [CrossRef]
- Fan, X.; Qu, R.; Zhang, Z. Relation between strength and hardness of high-entropy alloys. Acta Metall. Sin. 2021, 34, 1461–1482. [Google Scholar] [CrossRef]
- Maresca, F.; Curtin, W.A. Mechanistic Origin of High Strength in Refractory BCC High Entropy Alloys up to 1900K. Acta Mater. 2020, 182, 235–249. [Google Scholar] [CrossRef]
- Yin, B.; Maresca, F.; Curtin, W.A. Vanadium Is an Optimal Element for Strengthening in Both Fcc and Bcc High-Entropy Alloys. Acta Mater. 2020, 188, 486–491. [Google Scholar] [CrossRef]
- Rao, Y.; Baruffi, C.; De Luca, A.; Leinenbach, C.; Curtin, W.A. Theory-Guided Design of High-Strength, High-Melting Point, Ductile, Low-Density, Single-Phase BCC High Entropy Alloys. Acta Mater. 2022, 237, 118132. [Google Scholar] [CrossRef]
Alloy Composition | Young’s Modulus, E (GPa) | Shear Modulus, G (GPa) | Poisson’s Ratio, ν | |
---|---|---|---|---|
By Tension | By IEV | By IEV | By IEV | |
Al0.5Mo0.5NbTa0.5TiZr | - | 118.39 | 43.98 | 0.352 |
NbTaTiV | 113.66 ± 6.09 | 117.31 | 42.80 | 0.371 |
HfNbTaTiZr | 94.53 ± 1.69 | 95.27 | 34.98 | 0.362 |
Alloy | Experimental Method | Measured E Values (GPa) | Estimated E Values (GPa) | G (GPa) | B (GPa) | Ref. | |
---|---|---|---|---|---|---|---|
Iso-Strain | Iso-Stress | ||||||
Al0.4Hf0.6NbTaTiZr | Compression | 78 | 119 | 84 | [61] | ||
Al0.25NbTaTiZr | 118 | 129 | 86 | [50] | |||
AlNbTa0.5TiZr0.5 | 124 | 104 | 93 | [50] | |||
AlMo0.5NbTa0.5TiZr | 122 | 118 | 95 | [50] | |||
AlMo0.5NbTa0.5TiZr0.5 | 133 | 125 | 100 | [50] | |||
Al0.5Mo0.5NbTa0.5TiZr | 132 | 126 | 96 | [50] | |||
CrNbTiZr | 120 | 125 | 100 | [52] | |||
CrNbTiVZr | 100 | 126 | 104 | [52] | |||
NbTiVZr | 80 | 100 | 94 | [52] | |||
NbTiV2Zr | 98 | 105 | 98 | [52] | |||
Hf27.5Nb5Ta5Ti35Zr27.5 | Tension | 79 | 92 | 86 | [62] | ||
NbTaTiV | 115 | 134 | 128 | This study | |||
HfNbTaTiZr | 94 | 107 | 95 | This study | |||
CoCrFeMnNi | Resonant ultrasound spectroscopy | 202 | 220 | 216 | 80 | 143 | [63] |
Fe10Nb30Ta10Ti40Zr10 | 107 | 120 | 110 | [58] | |||
Hf25Nb12.5Ta12.5Ti25Zr25 | 81 | 98 | 89 | [58] | |||
HfNbTaTiZr | 94 | 107 | 95 | [58] | |||
HfNbTaTiZr | 79 | 107 | 95 | 135 | [64] | ||
HfNbTiZr | 70 | 107 | 95 | 25 | 106 | [65] | |
MoNbTaTiW | 156 | 222 | 168 | 59 | 139 | [66] | |
MoNbTaTiVW | 164 | 209 | 161 | 62 | 150 | [66] | |
Nb5Ta5Ti45Zr45 | 79 | 94 | 86 | [58] | |||
Co1.5CrFeNi1.5Ti0.5 | Impulse Excitation of Vibration | 216 | 207 | 195 | [67] | ||
HfNbTaTiZr | 90 | 107 | 95 | 36 | 62 | [68] | |
Al0.5Mo0.5NbTa0.5TiZr | 118 | 126 | 96 | 44 | This study | ||
NbTaTiV | 117 | 134 | 128 | 43 | This study | ||
HfNbTaTiZr | 95 | 107 | 95 | 35 | This study | ||
AlCoCuFeNiVZr | Nanoindentation | 153 | 131 | 105 | [69] | ||
Al19Co23Cr3Fe9Ni26Ti20 | 197 | 152 | 125 | [53] | |||
AlCo13Cr46Fe34Ni5Ti | 222 | 239 | 227 | [53] | |||
Al13Co18Cr21Fe19Ni18Ti11 | 211 | 184 | 148 | [53] | |||
AlCoCrFeNiTi0.1 | 229 | 182 | 140 | [54] | |||
AlCoCrFeNi2Ti0.1 | 209 | 185 | 146 | [54] | |||
AlCoCrFeNiTi0.1Si0.1 | 215 | 178 | 132 | [54] | |||
AlCoCrFeNi2Ti0.1Si0.1 | 219 | 181 | 139 | [54] | |||
AlCoCuFeNi | 143 | 156 | 127 | [70] | |||
AlCoCuFeNi | 165 | 156 | 127 | [70] | |||
AlCoCrFeNi | 198 | 184 | 141 | [54] | |||
AlCoCrFeNi2 | 196 | 187 | 147 | [54] | |||
Al0.2Co1.5CrFeNi1.5Ti | 210 | 169 | 134 | [71] | |||
AlCrTiVZr | 129 | 119 | 94 | [69] | |||
AlCrFe2Ni2 | 218 | 187 | 148 | [56] | |||
AlCrFe2Ni2(MoNb) 0.1 | 223 | 188 | 148 | [56] | |||
AlCrMnMoNiZr | 172 | 175 | 115 | [69] | |||
Al0.5CrMoNbV | 208 | 188 | 139 | 74 | [72] | ||
AlCrMoNbV | 200 | 175 | 125 | 71 | [72] | ||
Al0.1CrMoNbV | 215 | 200 | 155 | 77 | [73] | ||
Al0.56Mo1.18Nb1.19Ta1.15VW1.28 | 231 | 229 | 176 | [74] | |||
CrCuNbNiTi | 169 | 156 | 137 | [69] | |||
(CoCrFeNi)5.5Cr0.5 | 201 | 227 | 223 | [75] | |||
(CoCrFeNi)5Cr | 211 | 228 | 224 | [75] | |||
(CoCrFeNi) 4CrAl | 213 | 217 | 191 | [75] | |||
CrHfTiVZr | 105 | 118 | 96 | [69] | |||
CrMoNbTiW | 215 | 239 | 175 | 85 | [76] | ||
CrMoNbV | 217 | 204 | 161 | 78 | [72] | ||
Cr5NbTaTiV | 134 | 202 | 171 | [77] | |||
CrNbTaTiV | 144 | 156 | 139 | [77] | |||
Hf15Nb20Ta10Ti30Zr25 | 75 | 100 | 91 | 29 | [78] | ||
MoNbTaVW | 148 | 229 | 176 | [79] | |||
MoNbTaVW | 209 | 229 | 176 | [74] | |||
MoNbTaTiW | 217 | 222 | 168 | 82 | [80] | ||
NbTaTiWZr | 120 | 166 | 116 | [69] | |||
NbTaTiV | 132 | 134 | 128 | [77] |
Alloy | Computer Simulated E Values (GPa) | Estimated E Values (GPa) | B (GPa) | G (GPa) | ν | Ref. | |
---|---|---|---|---|---|---|---|
Iso-Strain | Iso-Stress | ||||||
Al0.25MoNbTiV | 168.0 | 160.5 | 128.5 | 161.4 | 63.3 | 0.326 | [51] |
Al0.4MoNbTiV | 171.1 | 156.4 | 123.8 | 159.7 | 64.7 | 0.322 | [51] |
Al0.45MoNbTiV | 171.7 | 157.4 | 124.9 | 159.1 | 65.0 | 0.320 | [51] |
Al0.5MoNbTiV | 172.1 | 155.4 | 122.7 | 158.6 | 65.2 | 0.319 | [51] |
Al0.6MoNbTiV | 173.3 | 153.5 | 120.7 | 157.5 | 65.8 | 0.317 | [51] |
Al0.75MoNbTiV | 173.9 | 151.5 | 117.4 | 155.9 | 66.2 | 0.314 | [51] |
AlMoNbTiV | 185.4 | 146.7 | 114.0 | 165.9 | 70.6 | 0.314 | [51] |
AlMoNbTiV | 174.4 | 146.7 | 114.0 | 153.6 | 66.5 | 0.311 | [81] |
Al1.25MoNbTiV | 174.4 | 143.0 | 110.6 | 151.4 | 66.7 | 0.308 | [51] |
Al1.5MoNbTiV | 173.8 | 140.2 | 107.3 | 147.4 | 66.7 | 0.303 | [82] |
AlMoNbV | 196.7 | 155.2 | 113.4 | 174.2 | 75.0 | 0.310 | [83] |
AlNbTiVZr | 122.6 | 94.6 | 88.4 | - | - | - | [84] |
AlNiCoCu | 116.0 | 142.7 | 115.7 | 41.0 | 56.0 | 0.030 | [85] |
AlNiCoCrFeTi | 161.0 | 169.2 | 134.3 | 154.0 | 61.0 | 0.330 | [85] |
Al0.3CoCrFeNi | 248.0 | 210.4 | 182.8 | 196.0 | 96.0 | 0.289 | [59] |
Al0.5CoCrFeNi | 231.0 | 201.8 | 166.3 | 190.0 | 89.0 | 0.297 | [59] |
AlCoCrFeNi | 201.0 | 184.2 | 140.6 | 183.0 | 76.0 | 0.317 | [59] |
Al1.3CoCrFeNi | 203.0 | 175.8 | 130.8 | 170.0 | 78.0 | 0.301 | [59] |
Al1.5CoCrFeNi | 202.0 | 170.8 | 125.7 | 167.0 | 78.0 | 0.297 | [59] |
Al2CoCrFeNi | 199.0 | 160.2 | 116.0 | 159.0 | 77.0 | 0.291 | [59] |
CoCrFeNi | 226.0 | 225.7 | 221.7 | - | 85.0 | - | [86] |
CoCrCuFeNi | 217.0 | 206.1 | 193.7 | - | 71.0 | - | [86] |
CoCrCuFeNi | 234.0 | 206.1 | 193.7 | 179.0 | 91.0 | 0.282 | [60] |
CoCrCuFeNiTi | 145.4 | 184.9 | 167.4 | 157.0 | 54.0 | 0.346 | [60] |
CoCrCuFeNiTi0.1 | 223.1 | 203.4 | 189.9 | 175.0 | 87.0 | 0.288 | [60] |
CoCrCuFeNiTi0.2 | 213.1 | 200.9 | 186.5 | 173.0 | 82.0 | 0.294 | [60] |
CoCrCuFeNiTi0.3 | 205.9 | 198.5 | 183.4 | 172.0 | 80.0 | 0.298 | [60] |
CoCrCuFeNiTi0.4 | 200.4 | 196.2 | 180.5 | 171.0 | 78.0 | 0.303 | [60] |
CoCrCuFeNiTi0.5 | 187.1 | 194.1 | 177.9 | 169.0 | 71.0 | 0.313 | [60] |
CoCrFeNiTi | 130.3 | 195.1 | 176.8 | 175.0 | 47.0 | 0.376 | [60] |
CoCrFeMnNi | 207.0 | 219.9 | 216.3 | - | - | 0.313 | [87] |
CoCrFeNi(Al0.3Ti0.2)0.25 | 171.9 | 219.6 | 206.6 | - | - | - | [88] |
CoCrFeNi(Al0.3Ti0.2)0.5 | 184.5 | 214.1 | 194.5 | - | - | - | [88] |
CoCrFeNi(Al0.3Ti0.2)0.75 | 194.1 | 209.0 | 184.5 | - | - | - | [88] |
CoCrFeNi(Al0.3Ti0.2) | 205.6 | 204.3 | 176.2 | - | - | - | [88] |
CrFeMoNiW | 273.2 | 297.2 | 276.2 | - | 105.2 | 0.298 | [89] |
CrFe1.2MoNiW | 270.0 | 294.2 | 273.3 | - | 103.9 | 0.299 | [89] |
CrHfNbTiZr | 104.4 | 113.8 | 93.7 | 117.2 | 38.6 | 0.352 | [90] |
CuIrNiPdPtRh | 213.0 | 239.8 | 185.5 | - | 84.0 | - | [86] |
CrMoNbTaW | 231.0 | 254.5 | 199.9 | 232.0 | 86.0 | 0.334 | [91] |
CrMoNbTaTiVZr | 130.9 | 161.4 | 123.1 | 166.3 | 49.7 | 0.369 | [81] |
CrMoNbTaTiVZr | 141.8 | 161.4 | 123.1 | 163.9 | 52.3 | 0.356 | [51] |
CrMoNbTaTiVWZr | 166.7 | 190.9 | 134.2 | 179.0 | 63.3 | 0.345 | [81] |
CrMoNbTaTiVWZr | 175.3 | 190.9 | 134.2 | 176.6 | 65.7 | 0.335 | [51] |
CrMoTiV | 195.2 | 207.9 | 168.3 | 193.4 | 73.3 | 0.330 | [83] |
CrMoMnW | 299.5 | 312.8 | 291.9 | - | 119.4 | 0.255 | [89] |
CrMoNiW | 294.7 | 315.9 | 296.1 | - | 112.3 | 0.312 | [89] |
HfMoNbTaTiZr | 136.6 | 137.0 | 104.8 | 160.8 | 50.3 | 0.358 | [51] |
HfMoNbTaW | 195.0 | 207.4 | 140.2 | 192.0 | 74.0 | 0.330 | [91] |
HfNbTaTiV | 97.0 | 120.3 | 110.3 | 135.0 | 35.0 | 0.380 | [92] |
HfNbTaTiZr | 104.1 | 107.0 | 94.7 | 136.3 | 37.9 | 0.373 | [51] |
HfNbTaTiZr | 88.9 | 107.0 | 94.7 | 140.1 | 31.9 | 0.394 | [51] |
HfNbTiVZr | 95.0 | 95.0 | 89.7 | 126.6 | 34.6 | 0.375 | [51] |
Mo0.8NbTiV0.2Zr | 137.6 | 134.4 | 102.2 | 132.9 | 51.8 | 0.327 | [51] |
Mo0.8NbTiV0.5Zr | 137.9 | 134.0 | 103.3 | 134.6 | 51.9 | 0.329 | [51] |
MoNbTiV0.25Zr | 141.6 | 142.1 | 105.3 | 137.4 | 53.3 | 0.328 | [51] |
MoNbTiV0.5Zr | 141.7 | 141.5 | 106.1 | 137.6 | 53.3 | 0.328 | [51] |
MoNbTiV0.75Zr | 141.5 | 140.9 | 106.8 | 138.0 | 53.3 | 0.329 | [51] |
MoNbTiVZr | 141.1 | 140.4 | 107.5 | 138.5 | 53.2 | 0.330 | [81] |
MoNbTiV1.25Zr | 141.4 | 139.9 | 108.2 | 140.6 | 53.1 | 0.332 | [51] |
MoNbTiV1.5Zr | 141.6 | 139.5 | 108.8 | 141.2 | 53.1 | 0.334 | [51] |
Mo0.8NbTiZr | 137.2 | 134.6 | 101.4 | 132.2 | 51.7 | 0.327 | [51] |
Mo0.9NbTiZr | 139.5 | 138.8 | 102.9 | 134.4 | 52.6 | 0.327 | [51] |
MoNbTaTiV | 139.2 | 170.6 | 144.2 | 181.2 | 50.7 | 0.372 | [51] |
MoNbTaTiVZr | 71.9 | 148.2 | 115.8 | 152.6 | 26.3 | 0.421 | [81] |
MoNbTaTiVZr | 69.4 | 148.2 | 115.8 | 156.6 | 24.3 | 0.426 | [51] |
MoNbTaVW | 204.5 | 229.4 | 175.8 | 245.1 | 75.1 | 0.361 | [51] |
MoNbTaVW | 200.0 | 229.4 | 175.8 | 222.0 | 82.0 | 0.348 | [93] |
MoNbTaWZr | 163.0 | 203.5 | 130.3 | 160.0 | 61.0 | 0.330 | [91] |
MoNbTaW | 228.7 | 250.2 | 190.3 | 261.6 | 84.4 | 0.354 | [51] |
MoNbTiV | 161.1 | 166.3 | 135.7 | 164.5 | 60.3 | 0.337 | [51] |
MoNbTiV | 178.6 | 166.3 | 135.7 | 165.7 | 67.6 | 0.320 | [81] |
MoNbTiV | 173.5 | 166.3 | 135.7 | 172.6 | 65.1 | 0.330 | [83] |
MoNbTiVZr | 139.5 | 140.4 | 107.5 | 138.7 | 52.5 | 0.333 | [51] |
MoNbTiVZr | 127.8 | 140.4 | 107.5 | 144.9 | 47.2 | 0.353 | [51] |
MoNbTiZr | 140.1 | 142.7 | 104.4 | 136.6 | 52.7 | 0.329 | [51] |
MoNbTiZr | 141.7 | 142.7 | 104.4 | 137.3 | 53.3 | 0.328 | [51] |
MoNbTaW | 245.0 | 250.2 | 190.3 | 236.0 | 92.0 | 0.327 | [94] |
MoNbTaTiW | 196.0 | 222.3 | 168.0 | 200.0 | 73.0 | 0.337 | [94] |
MoNbTaVW | 218.0 | 229.4 | 175.8 | 234.0 | 81.1 | 0.345 | [51] |
MoNbReTaW | 245.0 | 288.3 | 212.8 | 257.0 | 91.0 | 0.341 | [91] |
MoTiVZr | 76.4 | 149.5 | 108.2 | 139.0 | 27.1 | 0.408 | [51] |
MoTiVZr | 71.6 | 149.5 | 108.2 | 141.4 | 26.1 | 0.415 | [81] |
MoTiWZr | 185.9 | 211.0 | 124.6 | - | - | - | [57] |
MoTaTiW | 177.7 | 253.8 | 200.2 | - | - | - | [57] |
MoTaTiZr | 155.7 | 162.3 | 116.7 | - | - | - | [57] |
MoTaTiWZr | 175.5 | 206.0 | 133.4 | - | - | - | [57] |
MoTaTiVZr | 120.5 | 156.9 | 118.3 | 156.0 | 43.9 | 0.371 | [51] |
MoTaTiVZr | 115.5 | 156.9 | 118.3 | 154.3 | 43.4 | 0.375 | [81] |
MoTaWZr | 185.6 | 227.9 | 138.5 | - | - | - | [57] |
NbTiVZr | 121.1 | 100.2 | 94.0 | 118.6 | 45.7 | 0.330 | [81] |
NbTiVZr | 85.6 | 100.2 | 94.0 | 133.1 | 30.7 | - | [95] |
NbTiVZr | 119.7 | 100.2 | 94.0 | 117.9 | 45.1 | 0.331 | [51] |
NbTiV2Zr | 91.0 | 104.7 | 98.2 | 142.6 | 32.7 | - | [95] |
NbTaTiWV | 257.3 | 186.8 | 147.0 | 198.6 | 100.1 | 0.285 | [51] |
Nb10Ta25Ti60Zr5 | 80.0 | 129.3 | 120.6 | 131.0 | 29.0 | - | [55] |
Nb10Ta25Ti55TZr10 | 79.0 | 126.0 | 115.2 | 129.0 | 28.0 | - | [55] |
Nb10Ta25Ti50Zr15 | 89.0 | 122.9 | 110.4 | 126.0 | 32.0 | - | [55] |
Nb10Ta25Ti45Zr20 | 81.0 | 119.9 | 106.1 | 124.0 | 29.0 | - | [55] |
TaTiWZr | 171.3 | 180.5 | 118.8 | - | - | - | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, F.; Hu, Y.; Qu, R.; Liu, F. A Composition Design Strategy for Refractory High-Entropy Alloys. Materials 2025, 18, 4493. https://doi.org/10.3390/ma18194493
Ren F, Hu Y, Qu R, Liu F. A Composition Design Strategy for Refractory High-Entropy Alloys. Materials. 2025; 18(19):4493. https://doi.org/10.3390/ma18194493
Chicago/Turabian StyleRen, Faling, Yilong Hu, Ruitao Qu, and Feng Liu. 2025. "A Composition Design Strategy for Refractory High-Entropy Alloys" Materials 18, no. 19: 4493. https://doi.org/10.3390/ma18194493
APA StyleRen, F., Hu, Y., Qu, R., & Liu, F. (2025). A Composition Design Strategy for Refractory High-Entropy Alloys. Materials, 18(19), 4493. https://doi.org/10.3390/ma18194493