Physical Properties of Mold Flux and Mineralogical Characteristics of Flux Film for Low-alloy Peritectic Steel Continuous Casting
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods for Testing Physical Properties of Mold Flux
2.3. Methods for Analyzing Mineralogical Characteristics and Mechanism of Flux Film
3. Results and Discussion
3.1. Melting Properties of Mold Flux
3.2. Crystallization Behavior of Mold Flux
3.3. Mineralogical Structure of Flux Film
3.4. Mineralogical Formation Pattern of Flux Film
3.5. Mineralogical Heat Transfer Mechanism of Flux Film
3.6. Discussion
4. Conclusions
- (1)
- Mold fluxes designed for low-alloy peritectic steel should possess a narrow melting temperature range, low melting point (<1200 °C), and low viscosity (<0.1 Pa·s) to facilitate the formation of a uniformly flowing liquid slag layer and enhance lubrication effectiveness.
- (2)
- Strong crystallization capability of mold fluxes for low-alloy peritectic steel is essential, characterized by a high critical crystallization cooling rate (>50 °C/s) and a high initial crystallization temperature (>1350 °C). These properties ensure the rapid formation of a stable flux film structure and enhance heat transfer uniformity.
- (3)
- The mineralogical structure of the flux film for low-alloy peritectic steel presents a multilayered structure with a high crystallization ratio (60–80 vol%), mainly composed of the crystalline minerals cuspidine and akermanite. The high abundance and coarsened morphology of cuspidine crystals play a key role in regulating heat transfer.
- (4)
- The thermal conductivity of flux film for low-alloy peritectic steel remains low (0.47–0.67 W/m·K), primarily due to the high crystallinity and coarse crystal morphology that promote the formation of numerous micropores and grain boundaries between crystals, increasing the overall thermal resistance of the flux film.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, K.C. Structure and properties of slags used in the continuous casting of steel: Part 1. Conventional mould powders. ISIJ Int. 2016, 56, 1. [Google Scholar] [CrossRef]
- Long, X.; He, S.P.; Xu, J.F.; Huo, X.L.; Wang, Q. Properties of high basicity mold fluxes for peritectic steel slab casting. ISIJ Int. 2012, 19, 39. [Google Scholar] [CrossRef]
- Mills, K.C.; Fox, A.B. The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ Int. 2003, 43, 1479. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.; Zhang, J. Research on mold flux for hypo-peritectic steel at high casting speed. Int. J. Miner. Metall. Mater. 2007, 14, 219. [Google Scholar] [CrossRef]
- Cho, J.W.; Blazek, K.; Frazee, M.; Yin, H.; Park, J.H.; Moon, S.W. Assessment of CaO-Al2O3 based mold flux system for high aluminum TRIP casting. ISIJ Int. 2003, 53, 62. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, C.; Li, Y.; Cui, Y.; Huang, X.; Jin, Y. Effect of MnO on physicochemical properties of CaO-Al2O3-based mold flux of high-Mn steel for ultra-low-temperature applications. Metall. Mater. Trans. B 2025, 56, 2399. [Google Scholar] [CrossRef]
- Costaa, I.T.; Carvalho, C.S.; Oliveira, J.R.; Vieirab, E.A. Physical properties characterization of a peritectic mold flux formed from the addition of calcitic marble residue in the commercial one. J. Mater. Res. Technol. 2019, 8, 3297. [Google Scholar] [CrossRef]
- Kölbl, N. New mold slag compositions for the continuous casting of soft steels. Steel Res. Int. 2021, 93, 165. [Google Scholar] [CrossRef]
- Jiang, D.; Yu, X. Controlling Step Variation in the Reaction of High-Al Steel and CaO-SiO2-Type Mold Flux. Metall. Mater. Trans. B 2024, 55, 925. [Google Scholar] [CrossRef]
- Shen, Y.; Yan, W.; Zhao, X.; Chen, S.; Shi, C.; Yang, C.; Wang, K.; Wang, Y. Development and application of mold flux for high-speed continuous casting of high-carbon steel billets. J. Iron Steel Res. Int. 2025, 32, 1465. [Google Scholar] [CrossRef]
- Pereira, M.M.d.S.M.; Tavernier, H.; dos Santos Junior, T.; Vernilli, F. Design and analysis of fluorine-free mold fluxes for continuous casting of peritectic steels. Materials 2024, 17, 5947. [Google Scholar] [CrossRef]
- Hechu, K.; Slater, C.; Santillana, B.; Sridhar, S. The use of infrared thermography to detect thermal instability during solidification of peritectic steels. Mater. Charact. 2019, 154, 138. [Google Scholar] [CrossRef]
- Hanao, M.; Kawamoto, M.; Yamanaka, A. Influence of mold flux on initial solidification of hypo-peritectic steel in a continuous casting mold. ISIJ Int. 2012, 52, 1310. [Google Scholar] [CrossRef][Green Version]
- Long, X.; He, S.; Wang, Q.; Pistorius, P.C. Structure of solidified films of mold flux for peritectic steel. Metall. Mater. Trans. B 2017, 48, 1652. [Google Scholar] [CrossRef]
- Liu, T.; Long, M.J.; Chen, D.F.; Wu, S.X.; Tang, P.M.; Liu, S.; Duan, H.M.; Yang, J. Investigations of the peritectic reaction and transformation in a hypoperitectic steel: Using high-temperature confocal scanning laser microscopy and differential scanning calorimetry. Mater. Charact. 2019, 156, 109870. [Google Scholar] [CrossRef]
- Liu, L.; Han, X.; Li, M.; Zhang, D. Influence of mineralogical structure of mold flux film on heat transfer in mold during continuous casting of peritectic steel. Materials 2022, 15, 2980. [Google Scholar] [CrossRef] [PubMed]
- Klug, J.L.; Medeiros, S.L.S.; Matos, K.T.; Azevedo, C.A.; Maranhão, E.A.; Ferreira, J.A.C. Designing mould fluxes to prevent longitudinal cracking for peritectic steel slab casting. Ironmak. Steelmak. 2023, 50, 1451. [Google Scholar] [CrossRef]
- GB/T 40404-2021; Slag Material-Measurement of Melting Temperature-High Temperature Metallographic Method. Standardization Administration of China: Beijing, China, 2021.
- YB/T 185-2017; Test Method for Viscosity of Continuous Casting Mold Powder. Ministry of Industry and Information Technology (China): Beijing, China, 2017.
- YB/T 4130-2018; Refractory Materials-Determination of Thermal Conductivity (Calorimeter). Ministry of Industry and Information Technology (China): Beijing, China, 2018.
- Zhou, L.; Luo, H.; Wang, W.; Yan, X.; Wu, H. Effect of Al2O3/Na2O ratio and MnO on high-temperature properties of mold flux for casting peritectic steel. J. Iron Steel Res. Int. 2022, 29, 53. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, W.; Zhou, L.; Chen, J.; Zhong, X.; Si, X. Rapid Prediction of the viscosity of mold flux by ensemble tree models. Metall. Mater. Trans. B 2025, 56, 408. [Google Scholar] [CrossRef]
- Chen, F.; Wen, G.; Tang, P.; Lu, Y.; Yang, H. Effect of shape parameters on the melting behavior of hollow granular mold flux for continuous casting. Metall. Mater. Trans. B 2023, 54, 3485. [Google Scholar] [CrossRef]
- Mo, R.; Zhang, X.; Ren, Y.; Hu, J.; Zhang, L. Influence of substituting B2O3 with Li2O on the viscosity, structure, and crystalline phase of low-reactivity mold flux. Int. J. Miner. Metall. Mater. 2023, 30, 1320. [Google Scholar] [CrossRef]
- Gu, S.; Wen, G.; Ding, Z.; Tang, P.; Liu, Q. Effect of Shear Stress on Isothermal Crystallization Behavior of CaO-Al2O3-SiO2-Na2O-CaF2 Slags. Materials 2018, 11, 1085. [Google Scholar] [CrossRef]
- Nazim, M.A.; Emdadi, A.; Sander, T.; Malley, R. The Effect of mold flux wetting conditions with varying crucible materials on crystallization. Materials 2025, 18, 1174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, W.L.; Sohn, I.L. Crystallization behavior and structure analysis for molten CaO-SiO2-B2O3 based fluorine-free mold fluxes. J. Non-Cryst. Solids 2019, 511, 41. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Zhu, L.; Wang, Q.; He, S.; Wang, Q. Effect of substituting Na2O for SiO2 on the non-isothermal crystallization behavior of CaO-BaO-Al2O3 based mold fluxes for casting high Al steels. Ceram. Int. 2019, 45, 296. [Google Scholar] [CrossRef]
- Long, X.; Long, S.; Luo, W.; Li, X.; Tu, C.; Na, Y.; Xu, J. Crystallization of slag films of CaO-Al2O3-BaO-CaF2-Li2O-based mold fluxes for high-aluminum steels continuous casting. Materials 2023, 16, 1903. [Google Scholar] [CrossRef]
- Liu, L.; Han, X.; Zhang, D.; Li, M.; Wang, Y. Effects of mineral raw materials on melting and crystalline properties of mold flux and mineralogical structures of flux film for casting peritectic steel slab. ISIJ Int. 2023, 63, 1697. [Google Scholar] [CrossRef]
- Gao, Y.; Leng, M.; Chen, Y.; Chen, Z.; Li, J. Crystallization products and structural characterization of CaO-SiO2-based mold fluxes with varying Al2O3/SiO2 ratios. Materials 2019, 12, 206. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Han, X.L.; Liu, L.; Liu, L.N. Effect of mineralogical structure of flux film on slab quality for medium carbon steel. Trans. Indian. Inst. Met. 2018, 71, 1803. [Google Scholar] [CrossRef]
- Leng, M.; Lai, F.; Li, J. Effect of cooling rate on phase and crystal morphology transitions of CaO-SiO2-based systems and CaO-Al2O3-based systems. Materials 2019, 12, 62. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, X.; Yao, M. Simulation study on transient periodic heat transfer behavior of meniscus in continuous casting mold. Metall. Mater. Trans. B 2023, 54, 3164. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Zhang, L. Crystallization characteristics and heat transfer control of mould flux for peritectic steel continuous casting. ISIJ Int. 2022, 62, 1673. [Google Scholar]
Steel Number | Flux Number | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | K2O + Na2O | MnO | F− | C |
---|---|---|---|---|---|---|---|---|---|---|
Steel A | Flux A-mold flux | 36.29 | 31.77 | 4.18 | 3.72 | 1.03 | 7.82 | 1.80 | 6.87 | 6.31 |
Steel A | Flux A-flux film | 40.39 | 32.46 | 5.29 | 4.21 | 0.55 | 10.29 | 1.43 | 5.96 | --- |
Steel B | Flux B-mold flux | 38.31 | 31.03 | 4.32 | 1.55 | 2.03 | 8.78 | 0.32 | 6.80 | 7.03 |
Steel B | Flux B-flux film | 44.69 | 31.55 | 5.30 | 2.00 | 0.49 | 9.51 | 0.17 | 5.76 | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Han, X.; Liu, L.; Guo, J.; Yang, Y.; Wu, L. Physical Properties of Mold Flux and Mineralogical Characteristics of Flux Film for Low-alloy Peritectic Steel Continuous Casting. Materials 2025, 18, 4298. https://doi.org/10.3390/ma18184298
Zhang D, Han X, Liu L, Guo J, Yang Y, Wu L. Physical Properties of Mold Flux and Mineralogical Characteristics of Flux Film for Low-alloy Peritectic Steel Continuous Casting. Materials. 2025; 18(18):4298. https://doi.org/10.3390/ma18184298
Chicago/Turabian StyleZhang, Di, Xiuli Han, Lei Liu, Jingjing Guo, Yue Yang, and Lei Wu. 2025. "Physical Properties of Mold Flux and Mineralogical Characteristics of Flux Film for Low-alloy Peritectic Steel Continuous Casting" Materials 18, no. 18: 4298. https://doi.org/10.3390/ma18184298
APA StyleZhang, D., Han, X., Liu, L., Guo, J., Yang, Y., & Wu, L. (2025). Physical Properties of Mold Flux and Mineralogical Characteristics of Flux Film for Low-alloy Peritectic Steel Continuous Casting. Materials, 18(18), 4298. https://doi.org/10.3390/ma18184298