Impact of Grinding Depth on Dislocation Structures and Surface Hardening in C45 Steel
Highlights
- Grinding depth alters dislocation density and character in a C45 steel surface.
- X-ray diffraction (XRD) shows both peak broadening and shifts due to increased plastic deformation.
- Electron backscatter diffraction (EBSD) reveals dislocation structures and grain refinement near the surface.
- Nanoindentation confirms increased hardness and decreased dislocation mobility.
- Residual stress and misorientation correlate with evolving dislocation types.
Abstract
1. Introduction
2. Materials and Methods
2.1. Workpiece Preparation
2.2. Grinding the Workpiece
2.3. Characterization
2.3.1. XRD Analysis for Lattice Strain and Crystallite Size
2.3.2. XRD Analysis for Dislocation Structure
2.3.3. Nanoindentation Test
2.3.4. Nanoindentation Test for Dislocation Mobility Measurement
3. Results
- Zone II—plastically deformed ferrite and pearlite grains;
- Zone III—the unaffected base microstructure.
4. Discussion
5. Conclusions
- Intermediate grinding depths of 8–14 µm reduce hardness due to partial thermal recovery and increased edge dislocation mobility. These parameters are recommended when a balance between surface strengthening and ductility is desired, for example in components subjected to both wear and impact loads.
- Deep grinding (20 µm) produces a secondary hardness peak due to high residual and oxide-induced stresses, but the stability of this effect is lower because of thermally activated recovery. Such conditions may be suitable for short-term performance enhancement but require caution for long-term applications, especially at elevated temperatures or under cyclic loading.
- The results show that shallow grinding (2 µm) produces the highest hardness, highest GND and SSD densities, and the most stable compressive residual stresses. Such a microstructural state is expected to improve resistance to surface-initiated fatigue, making this depth preferable in applications where both high hardness and structural stability are critical.
- The observed reduction in hardness at intermediate and deep grinding depths is associated with thermally activated recovery, as confirmed by oxide phase composition and dislocation character. These findings indicate that maintaining grinding temperatures below the oxide formation threshold corresponding to hematite appearance (~623 K) helps preserve the strain-hardened microstructure.
- The experimentally established relationships between the grinding depth, dislocation type, residual stress magnitude, and microstructural refinement provide a quantitative basis for selecting grinding parameters to achieve targeted hardness profiles. This approach offers a controllable, mechanical alternative to thermochemical treatments for enhancing surface performance of ferritic steels.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, R. The Influence of Threshold Forces on Size Roundness and Contour Errors in Precision Grinding. CIRP Ann. 1981, 30, 251–254. [Google Scholar] [CrossRef]
- Rowe, W.B. (Ed.) Grinding Machine Developments. In Principles of Modern Grinding Technology, 2nd ed.; William Andrew Publishing: Boston, MA, USA, 2009; pp. 163–210. [Google Scholar]
- Heinzel, C.; Bleil, N. The Use of the Size Effect in Grinding for Work-hardening. CIRP Ann. 2007, 56, 327–330. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Giwerzew, A. Theoretical Estimation of the Maximum Contact Area Temperature in Shave-Grinding. Prod. Eng. 1999, 6, 14. [Google Scholar]
- Bardin, J.A.; Eisen, E.A.; Tolbert, P.E.; Hallock, M.F.; Hammond, S.K.; Woskie, S.R. Mortality Studies of Machining Fluid Exposure in the Automobile Industry V: A Case-Control Study of Pancreatic Cancer. Am. J. Ind. Med. 1997, 32, 240–247. [Google Scholar] [CrossRef]
- Szkodo, M.; Chodnicka-Wszelak, K.; Deja, M.; Stanisławska, A.; Bartmański, M. The Influence of the Depth of Cut in Single-Pass Grinding on the Microstructure and Properties of the C45 Steel Surface Layer. Materials 2020, 13, 1040. [Google Scholar] [CrossRef]
- Malkin, S.; Guo, C. Grinding Technology: Theory and Application of Machining with Abrasives; Industrial Press Inc.: South Norwalk, CT, USA, 2008. [Google Scholar]
- Williamson, G.K.; Hall, W.H. X-ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Révész, Á.; Ungár, T.; Borbély, A.; Lendvai, J. Dislocations and Grain Size in Ball-Milled Iron Powder. Nanostruct. Mater. 1996, 7, 779–788. [Google Scholar] [CrossRef]
- Cong, Z.; Murata, Y. Dislocation Density of Lath Martensite in 10Cr-5W Heat-Resistant Steels. Mater. Trans. 2011, 52, 2151–2154. [Google Scholar] [CrossRef]
- HajyAkbary, F.; Sietsma, J.; Böttger, A.J.; Santofimia, M.J. An Improved X-ray Diffraction Analysis Method to Characterize Dislocation Density in Lath Martensitic Structures. Mater. Sci. Eng. A 2015, 639, 208–218. [Google Scholar] [CrossRef]
- Lim, H.; Hale, L.M.; Zimmerman, J.A.; Battaile, C.C.; Weinberger, C.R. A Multi-Scale Model of Dislocation Plasticity in α-Fe: Incorporating Temperature Strain Rate and Non-Schmid Effects. Int. J. Plast. 2015, 73, 100–118. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Arsenlis, A.; Parks, D.M. Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density. Acta Mater. 1999, 47, 1597–1611. [Google Scholar] [CrossRef]
- Qiu, X.; Huang, Y.; Nix, W.D.; Hwang, K.C.; Gao, H. Effect of Intrinsic Lattice Resistance in Strain Gradient Plasticity. Acta Mater. 2001, 49, 3949–3958. [Google Scholar] [CrossRef]
- Durst, K.; Backes, B.; Franke, O.; Göken, M. Indentation Size Effect in Metallic Materials: Modeling Strength from Pop-In to Macroscopic Hardness Using Geometrically Necessary Dislocations. Acta Mater. 2006, 54, 2547–2555. [Google Scholar] [CrossRef]
- Taylor, G.I. Plastic Strain in Metals. J. Inst. Met. 1938, 62, 307–324. [Google Scholar]
- Orowan, E. Zur Kristallplastizität. III. Z. Phys. 1934, 89, 634–659. [Google Scholar] [CrossRef]
- Dyson, B.F. Microstructure-Based Creep Constitutive Model for Precipitation Strengthened Alloys: Theory and Application. Mater. Sci. Technol. 2009, 25, 213–220. [Google Scholar] [CrossRef]
- Ghara, T.; Paul, S.; Bandyopadhyay, P.P. Influence of Grit Blasting on Residual Stress Depth Profile and Dislocation Density in Different Metallic Substrates. Metall. Mater. Trans. A 2021, 52, 65–81. [Google Scholar] [CrossRef]
- Torabian, N.; Favier, V.; Dirrenberger, J.; Adamski, F.; Ziaei-Rad, S.; Ranc, N. Correlation of the high and very high cycle fatigue response of ferrite based steels with strain rate-temperature conditions. Acta Mater. 2017, 134, 40–52. [Google Scholar] [CrossRef]
- Abed, F.H.; Saffarini, M.H.; Abdul-Latif, A.; Voyiadjis, G.Z. Flow Stress and Damage Behavior of C45 Steel Over a Range of Temperatures and Loading Rates. J. Eng. Mater. Technol. 2017, 139, 021012. [Google Scholar] [CrossRef]
- Po, G.; Cui, Y.; Rivera, D.; Cereceda, D.; Swinburne, T.D.; Marian, J. A Phenomenological Dislocation Mobility Law for BCC Metals. Acta Mater. 2016, 119, 123–135. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, Z.; Weinberger, C.R.; Zhang, Z.; Zhu, T.; Mao, S.X. In Situ Atomic-Scale Observation of Twinning-Dominated Deformation in Nanoscale Body-Centred Cubic Tungsten. Nat. Mater. 2015, 14, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Z.; Wang, J. Deformation Twinning in Body-Centered Cubic Metals and Alloys. Prog. Mater. Sci. 2023, 139, 101160. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Wang, Y. Determination of Twinning Path from Broken Symmetry: A Revisit to Deformation Twinning in BCC Metals. Acta Mater. 2020, 196, 280–294. [Google Scholar] [CrossRef]
- Carrez, P.; Mussi, A.; Cordier, P. On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors. Annu. Rev. Earth Planet. Sci. 2024, 52, 409–441. [Google Scholar] [CrossRef]
- Huang, M.; Li, Z.; Tong, J. The Influence of Dislocation Climb on the Mechanical Behavior of Polycrystals and Grain Size Effect at Elevated Temperature. Int. J. Plast. 2014, 61, 112–127. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Fey, L.; He, S.; Beyerlein, I.; Cao, P.; Marian, J.O. Models of Dislocation Glide and Strengthening Mechanisms in BCC Complex Concentrated Alloys. MRS Bull. 2023, 48, 777–789. [Google Scholar] [CrossRef]
- Kaufmann, D.; Schneider, A.S.; Mönig, R.; Volkert, C.A.; Kraft, O. Effect of Surface Orientation on the Plasticity of Small BCC Metals. Int. J. Plast. 2013, 49, 145–151. [Google Scholar] [CrossRef]
- Vitek, V. Core Structure of Screw Dislocations in Body-Centred Cubic Metals: Relation to Symmetry and Interatomic Bonding. Philos. Mag. 2004, 84, 415–428. [Google Scholar] [CrossRef]
- Seeger, A.; Holzwarth, U. Slip Planes and Kink Properties of Screw Dislocations in High-Purity Niobium. Philos. Mag. 2006, 86, 3861–3892. [Google Scholar] [CrossRef]
- Greer, J.R.; Weinberger, C.R.; Cai, W. Comparing the Strength of F.C.C. and B.C.C. Sub-Micrometer Pillars: Compression Experiments and Dislocation Dynamics Simulations. Mater. Sci. Eng. A 2008, 493, 21–25. [Google Scholar] [CrossRef]
- Matsui, H.; Kimura, H. A Mechanism of the “Unexpected {110} Slip” Observed in BCC Metals Deformed at Low Temperatures. Scr. Metall. 1973, 7, 905–913. [Google Scholar] [CrossRef]
- Kapci, M.F.; Schön, J.C.; Bal, B. The Role of Hydrogen in the Edge Dislocation Mobility and Grain Boundary–Dislocation Interaction in α-Fe. Int. J. Hydrogen Energy 2021, 46, 32695–32709. [Google Scholar] [CrossRef]
- Lu, K.; Lu, J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 2004, 375–377, 38–45. [Google Scholar] [CrossRef]
- Wen, J.; Tang, J.; Shao, W.; Zhou, W.; Huang, W. Towards Understanding Subsurface Characteristics in Burn Process of Gear Profile Grinding. Materials 2023, 16, 2493. [Google Scholar] [CrossRef]
- Gaviria, J.; Bohé, A.; Pasquevich, A.; Pasquevich, D. Hematite to Magnetite Reduction Monitored by Mössbauer Spectroscopy and X-ray Diffraction. Phys. B Condens. Matter 2007, 389, 198–201. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z. The Effects of Temperature and Strain Rate in FCC and BCC Metals During Extreme Deformation Rates. Acta Mater. 2018, 151, 1–10. [Google Scholar] [CrossRef]
- Yao, S.; Pei, X.; Yu, J.; Yu, Y.; Wu, Q. Homogeneous Nucleation and Forest Hardening Result in Thermal Hardening Phenomenon in Shock Loaded BCC Metals. arXiv 2018, arXiv:1810.01954. [Google Scholar] [CrossRef]
- Grabowski, B.; Zotov, N. Thermally-Activated Dislocation Mobility in BCC Metals: An Accelerated Molecular Dynamics Study. Comput. Mater. Sci. 2021, 200, 110804. [Google Scholar] [CrossRef]
- Eleti, R.R.; Stepanov, N.; Zherebtsov, S. Mechanical Behavior and Thermal Activation Analysis of HfNbTaTiZr Body-Centered Cubic High-Entropy Alloy During Tensile Deformation at 77 K. Scr. Mater. 2020, 188, 118–123. [Google Scholar] [CrossRef]
Chemical Composition wt.% | |||||||
---|---|---|---|---|---|---|---|
C | Mn | Si | P | S | Cu | Cr | Ni |
0.47 | 0.65 | 0.27 | 0.030 | 0.025 | 0.25 | 0.17 | 0.26 |
Parameter | Symbol | Value | Unit | Remarks |
---|---|---|---|---|
Grinding machine | – | SPG 25 × 60 | – | CNC surface grinder |
Grinding wheel | – | Norton 38A60LVS | – | Vortex type |
Wheel dimensions | – | 250 × 25 × 76.2 | mm | Outer × Width × Bore |
Circumferential speed | vs | 23 | m/s | Constant |
Table feed rate | vft | 1 | m/min | Constant |
Number of passes | – | 4 | – | Two per each side |
Grinding depth per pass | ae | 2/8/14/20 | µm | Variable |
Coolant | – | Water-based emulsion | – | Used during grinding |
Wheel dressing | – | Before each trial | – | To maintain wheel sharpness |
hc | ρGND | HISE | ρSSD | H0 | E* | υ | ||
---|---|---|---|---|---|---|---|---|
(nm) | (m−2) × 1014 | (GPa) | (m−2) × 1015 | (GPa) | (GPa) | (s−1) | (nm/s) | |
depth 0 µm | 754.12 | 0.84 | 1.44 ± 0.13 | 0.114 | 1.09 | 87.9 ± 7.9 | 0.0057 | 176.06 |
depth 2 µm | 337.64 | 1.88 | 7.16 ± 0.82 | 4.716 | 7.02 | 334.0 ± 56.8 | 0.0041 | 3.061 |
depth 8 µm | 419.97 | 1.51 | 4.63 ± 0.59 | 1.899 | 4.46 | 235.9 ± 30.1 | 0.0037 | 6.861 |
depth 14 µm | 395.44 | 1.61 | 5.22 ± 0.77 | 2.446 | 5.06 | 255.0 ± 33.8 | 0.0032 | 4.607 |
depth 20 µm | 357.12 | 1.78 | 6.40 ± 0.49 | 3.740 | 6.25 | 345.7 ± 45.1 | 0.0037 | 3.483 |
4ε (%) | as·λ/L | L (nm) | E (GPa) | σR (MPa) | |
---|---|---|---|---|---|
annealed ferrite | 0.0069 | 0.0012 | 128.3333 | 87.9 | 151.63 |
2 µm depth | 0.0066 | 0.0021 | 73.33333 | 358.99 | 592.33 |
8 µm depth | 0.0049 | 0.0034 | 45.29412 | 215.48 | 263.96 |
14 µm depth | 0.0066 | 0.0017 | 90.58824 | 237.70 | 392.21 |
20 µm depth | 0.0069 | 0.0018 | 85.55556 | 350.85 | 605.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanisławska, A.; Moszczyńska, D.; Mizera, J.; Cavaliere, P.; Szkodo, M. Impact of Grinding Depth on Dislocation Structures and Surface Hardening in C45 Steel. Materials 2025, 18, 3870. https://doi.org/10.3390/ma18163870
Stanisławska A, Moszczyńska D, Mizera J, Cavaliere P, Szkodo M. Impact of Grinding Depth on Dislocation Structures and Surface Hardening in C45 Steel. Materials. 2025; 18(16):3870. https://doi.org/10.3390/ma18163870
Chicago/Turabian StyleStanisławska, Alicja, Dorota Moszczyńska, Jarosław Mizera, Pasquale Cavaliere, and Marek Szkodo. 2025. "Impact of Grinding Depth on Dislocation Structures and Surface Hardening in C45 Steel" Materials 18, no. 16: 3870. https://doi.org/10.3390/ma18163870
APA StyleStanisławska, A., Moszczyńska, D., Mizera, J., Cavaliere, P., & Szkodo, M. (2025). Impact of Grinding Depth on Dislocation Structures and Surface Hardening in C45 Steel. Materials, 18(16), 3870. https://doi.org/10.3390/ma18163870