Dynamic Behavior of Advanced Materials and Structures
Conflicts of Interest
References
- Meyers, M.A. Dynamic Behavior of Materials; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Silberschmidt, V. Dynamic Deformation, Damage and Fracture in Composite Materials and Structures; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Shukla, A.; Ravichandran, G.; Rajapakse, Y. Dynamic Failure of Materials and Structures; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical Metamaterials Associated with Stiffness, Rigidity and Compressibility: A Brief Review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Xiao, L.; Shi, G.; Song, W. Machine Learning Predictions on the Compressive Stress–Strain Response of Lattice-Based Metamaterials. Int. J. Solids Struct. 2024, 300, 112893. [Google Scholar] [CrossRef]
- Zheng, X.; Lee, H.; Weisgraber, T.H.; Shusteff, M.; DeOtte, J.; Duoss, E.B.; Kuntz, J.D.; Biener, M.M.; Ge, Q.; Jackson, J.A.; et al. Ultralight, Ultrastiff Mechanical Metamaterials. Science 2014, 344, 1373–1377. [Google Scholar] [CrossRef]
- Song, W.; Li, R.; Feng, G.; Xiao, L. Large Dynamic Mechanical Behaviors and Deformation Mechanism of Hybrid Triply Periodic Minimal Surface Structures. Int. J. Impact Eng. 2025, 203, 105359. [Google Scholar] [CrossRef]
- Feng, G.; Li, S.; Xiao, L.; Song, W. Mechanical Properties and Deformation Behavior of Functionally Graded TPMS Structures under Static and Dynamic Loading. Int. J. Impact Eng. 2023, 176, 104554. [Google Scholar] [CrossRef]
- Zhu, T.; Ren, Z.; Xu, J.; Shen, L.; Xiao, C.; Zhang, C.; Zhou, X.; Jian, X. Damage evolution model and failure mechanism of continuous carbon fiber-reinforced thermoplastic resin matrix composite materials. Compos. Sci. Technol. 2023, 244, 110300. [Google Scholar] [CrossRef]
- Wang, A.; Xu, G.; Liu, X. Effect of polyurea coating on low-velocity impact properties of unidirectional carbon fiber-reinforced polymer composites plates. Structures 2024, 61, 106090. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Yin, B.; Li, S.; Jia, W.; Lao, D.; Wang, H.; Liu, J. New design of bismuth borate ceramic/epoxy composites with excellent fracture toughness and radiation shielding capabilities. Mater. Today Commun. 2023, 35, 106102. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, Y. Dynamic response of foam core sandwich panel with composite face sheets during low-velocity impact and penetration. Int. J. Impact Eng. 2020, 139, 103508. [Google Scholar] [CrossRef]
- Acanfora, V.; Zarrelli, M.; Riccio, A. Experimental and numerical assessment of the impact behaviour of a composite sandwich panel with a polymeric honeycomb core. Int. J. Impact Eng. 2023, 171, 104392. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Wang, Z.; Wang, Q.; Wu, T.; Qin, Q. Dynamic response and failure of CFRP Kagome lattice core sandwich panels subjected to low-velocity impact. Int. J. Impact Eng. 2023, 181, 104737. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Z.; Ning, J.; Xiao, G.; Liu, E.; Shu, X. Dynamic Response of Sandwich Structures with Graded Auxetic Honeycomb Cores under Blast Loading. Compos. Part B Eng. 2016, 106, 206–217. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, H.; Tian, R.; Xue, Q.; Guan, H.; Yang, X. Quasi-Static Compression and Dynamic Crushing Behaviors of Novel Hybrid Re-Entrant Auxetic Metamaterials with Enhanced Energy-Absorption. Compos. Struct. 2022, 288, 115399. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, X.; Han, D.; Cheng, X.; Jiang, W.; Zhang, X.; Zhang, X.; Xie, Y. Static and Dynamic Properties of a Perforated Metallic Auxetic Metamaterial with Tunable Stiffness and Energy Absorption. Int. J. Impact Eng. 2022, 164, 104193. [Google Scholar] [CrossRef]
- Guo, M.; Yang, H.; Ma, L. 3D Lightweight Double Arrow-Head Plate-Lattice Auxetic Structures with Enhanced Stiffness and Energy Absorption Performance. Compos. Struct. 2022, 290, 115484. [Google Scholar] [CrossRef]
- Duncan, O.; Shepherd, T.; Moroney, C.; Foster, L.; Venkatraman, P.D.; Winwood, K.; Allen, T.; Alderson, A. Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection. Appl. Sci. 2018, 8, 941. [Google Scholar] [CrossRef]
- Kolken, H.M.A.; Zadpoor, A.A. Auxetic Mechanical Metamaterials. RSC Adv. 2017, 7, 5111–5129. [Google Scholar] [CrossRef]
- Galea Mifsud, R.; Muscat, G.A.; Grima-Cornish, J.N.; Dudek, K.K.; Cardona, M.A.; Attard, D.; Farrugia, P.-S.; Gatt, R.; Evans, K.E.; Grima, J.N. Auxetics and FEA: Modern Materials Driven by Modern Simulation Methods. Materials 2024, 17, 1506. [Google Scholar] [CrossRef]
- Sridharan, S.; Pankow, M. Performance Evaluation of Two Progressive Damage Models for Composite Laminates under Various Speed Impact Loading. Int. J. Impact Eng. 2020, 143, 103615. [Google Scholar] [CrossRef]
- Liu, S.; Luan, Y.; Li, Y.; Su, Q.; Guo, Z.; Song, W. A 3D printed continuous carbon fiber reinforced composite with function of self-detecting and self-healing of internal damages. Compos. Sci. Technol. 2023, 243, 110264. [Google Scholar] [CrossRef]
- Qiang, X.; Wang, T.; Xue, H.; Ding, J.; Deng, C. Study on Low-Velocity Impact and Residual Compressive Mechanical Properties of Carbon Fiber–Epoxy Resin Composites. Materials 2024, 17, 3766. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Xue, P.; Liu, X.; Bai, C.; Zhang, X.; Li, X.; Zhang, C.; Yang, X. Energy Absorption and Failure Modes of Different Composite Open-Section Crush Elements under Axial Crushing Loading. Materials 2024, 17, 3197. [Google Scholar] [CrossRef] [PubMed]
- Stachyra, G.; Kloda, L.; Szmit, Z. Coupled Modal Analysis and Aerodynamics of Rotating Composite Beam. Materials 2023, 16, 7356. [Google Scholar] [CrossRef]
- Lan, K.; Wang, H.; Wang, C. Delamination Behavior of CFRP Laminated Plates under the Combination of Tensile Preloading and Impact Loading. Materials 2023, 16, 6595. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, G.; Yu, Y.; Zhuo, T. Experimental and numerical study on the lightweight design of load-bearing energy absorption structure for subway train. Thin-Walled Struct. 2024, 197, 111542. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, L.; Wen, D.; Zhu, G.; Yu, Q.; Ma, Z. Bending response and energy absorption of sandwich beams with novel auxetic honeycomb core. Eng. Struct. 2021, 247, 113204. [Google Scholar] [CrossRef]
- Mahgoub, M.; Liu, C.; Tan, Z. Study on Dynamic Mechanical Properties of Sandwich Beam with Stepwise Gradient Polymethacrylimide (PMI) Foam Core under Low-Velocity Impact. Materials 2024, 17, 2099. [Google Scholar] [CrossRef]
- Bian, X.; Yang, L.; Wang, T.; Huang, G. Numerical Investigation on Anti-Explosion Performance of Non-Metallic Annular Protective Structures. Materials 2023, 16, 7549. [Google Scholar] [CrossRef]
- Li, Z.; Xu, W.; Wang, C.; Liu, X.; Sun, Y. Investigation on Vibration Characteristics of Thin-Walled Steel Structures under Shock Waves. Materials 2023, 16, 4748. [Google Scholar] [CrossRef]
- Borecki, M.; Rychlik, A.; Zan, L.; Korwin-Pawlowski, M.L. Steel Automotive Wheel Rims—Data Fusion for the Precise Identification of the Technical Condition and Indication of the Approaching End of Service Life. Materials 2024, 17, 475. [Google Scholar] [CrossRef]
- Yu, S.; Wang, A.; Zhao, L. Characteristics test study on electromagnetic actuator. Mach. Des. Manuf. 2011, 1, 136–138. [Google Scholar]
- Zhang, B. Research on Hybrid Isolator Design Technique. Master’s Thesis, Harbin Engineering University, Harbin, China, 2011. [Google Scholar]
- Zheng, X.; Zhang, C.; Lou, Y.; Xue, G.; Bai, H. Dynamic Characteristic Analysis of a Toothed Electromagnetic Spring Based on the Improved Bouc—Wen Model. Materials 2023, 16, 4889. [Google Scholar] [CrossRef]
- Liu, S.; Hu, M.; Xiao, L.; Feng, G.; Song, K.; Song, W.; Qiao, J. Effects of Strain Rate and Low Temperature on Dynamic Behaviors of Additively Manufactured CoCrFeMnNi High-Entropy Alloys. Mater. Sci. Eng. A 2024, 913, 147100. [Google Scholar] [CrossRef]
- Medvedev, A.E.; Maconachie, T.; Leary, M.; Qian, M.; Brandt, M. Materials & Design Perspectives on Additive Manufacturing for Dynamic Impact Applications. Mater. Des. 2022, 221, 110963. [Google Scholar]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High Entropy Alloys: A Focused Review of Mechanical Properties and Deformation Mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Song, W.; Mu, K.; Feng, G.; Huang, Z.; Liu, Y.; Huang, X.; Xiao, L. Mechanical Properties of 3D Printed Interpenetrating Phase Composites with TPMS Architectures. Thin-Walled Struct. 2023, 193, 111210. [Google Scholar] [CrossRef]
- Xiao, L.; Mu, K.; Liu, S.; Song, W. Experimental Study on the Fracture Behavior of 3D Printed Interpenetrating Phase Composites with Triply Periodic Minimal Surface Architectures. Thin-Walled Struct. 2025, 208, 112847. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, N.; Yu, Q.; Liu, Z.; Qu, R.; Zhang, J.; Li, S.; Ren, D.; Berto, F.; Zhang, Z.; et al. On the Damage Tolerance of 3-D Printed Mg-Ti Interpenetrating-Phase Composites with Bioinspired Architectures. Nat. Commun. 2022, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Crook, C.; Bauer, J.; Guell Izard, A.; Santos de Oliveira, C.; Martins de Souza e Silva, J.; Berger, J.B.; Valdevit, L. Plate-Nanolattices at the Theoretical Limit of Stiffness and Strength. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, Z.; Gao, H.; Li, X. Achieving the Theoretical Limit of Strength in Shell-Based Carbon Nanolattices. Proc. Natl. Acad. Sci. USA 2022, 119, 1–11. [Google Scholar] [CrossRef]
- Liu, S.; Sun, T.; Kou, Z.; Han, X.; Gao, Q.; Zhang, J.; Liu, X.; Zhang, L.; Orava, J.; Song, K.; et al. Promising Pathways for Balancing Strength and Ductility in Chemically Complex Alloys with Medium-to-high Stacking Fault Energies. Int. J. Plast. 2025, 190, 104358. [Google Scholar] [CrossRef]
- Lei, M.; Aditya, R.; Liu, L.; Wu, M.; Wang, J.; Zhou, K.; Yao, Y. A Multi-Scale Constitutive Model for AlSi10Mg Alloy Fabricated via Laser Powder Bed Fusion. Int. J. Solids Struct. 2025, 306, 113111. [Google Scholar] [CrossRef]
- Tang, Y.; Li, D. Dynamic Response of High-Entropy Alloys to Ballistic Impact. Sci. Adv. 2022, 8, 1–9. [Google Scholar] [CrossRef]
- Yu, G.; Xiao, L.; Song, W. Deep Learning-Based Heterogeneous Strategy for Customizing Responses of Lattice Structures. Int. J. Mech. Sci. 2022, 229, 107531. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Zhao, M.; Su, X.; Tan, Y.; Ding, J. Customizable Anisotropic Microlattices for Additive Manufacturing: Machine Learning Accelerated Design, Mechanical Properties and Structural-Property Relationships. Addit. Manuf. 2024, 89, 104248. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, D. Machine Learning and Feature Representation Approaches to Predict Stress-Strain Curves of Additively Manufactured Metamaterials with Varying Structure and Process Parameters. Mater. Des. 2024, 241, 112932. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Xiao, L. Dynamic Behavior of Advanced Materials and Structures. Materials 2025, 18, 2878. https://doi.org/10.3390/ma18122878
Song W, Xiao L. Dynamic Behavior of Advanced Materials and Structures. Materials. 2025; 18(12):2878. https://doi.org/10.3390/ma18122878
Chicago/Turabian StyleSong, Weidong, and Lijun Xiao. 2025. "Dynamic Behavior of Advanced Materials and Structures" Materials 18, no. 12: 2878. https://doi.org/10.3390/ma18122878
APA StyleSong, W., & Xiao, L. (2025). Dynamic Behavior of Advanced Materials and Structures. Materials, 18(12), 2878. https://doi.org/10.3390/ma18122878