Application of Industrial NF and RO Membranes in Separation of Post-Fermentation Solutions: Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feed Solutions
2.2. Experimental Setup
2.3. Industrial Membranes
2.4. Analytical Methods
3. Results and Discussion
3.1. Separation of Fermentation Broth Compounds
3.2. Separation of Synthetic Fermentation Broth
3.3. Separation of Real Fermentation Broth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marr, A.C. 1,3-Propanediol, an Exemplary Bio-Renewable Organic Platform Chemical. Adv. Synth. Catal. 2024, 366, 4835–4845. [Google Scholar] [CrossRef]
- Nimbalkar, P.R.; Dharne, M.S. A Review on Microbial 1,3-Propanediol Production: Emerging Strategies, Key Hurdles and Attainable Solutions to Re-Establish Its Commercial Interest. Ind. Crops Prod. 2024, 209, 117961. [Google Scholar] [CrossRef]
- Fokum, E.; Zabed, H.M.; Yun, J.; Zhang, G.; Qi, X. Recent Technological and Strategical Developments in the Biomanufacturing of 1,3-Propanediol from Glycerol. Int. J. Environ. Sci. Technol. 2021, 18, 2467–2490. [Google Scholar] [CrossRef]
- Yeow, T.A.; Said Ismail, A.A.; Elly Agustin, Y.; Ho, S.S.; Yeap, S.K.; Hui, Y.W.; Amru Indera Luthfi, A.; Fairuz Abdul Manaf, S.; Silvamany, H.; Tan, J.P. Review on the Downstream Purification of the Biologically Produced 1,3-Propanediol. Appl. Microbiol. Theory Technol. 2024, 5, 72–92. [Google Scholar] [CrossRef]
- Cuellar, M.C.; Straathof, A.J. Downstream of the Bioreactor: Advancements in Recovering Fuels and Commodity Chemicals. Curr. Opin. Biotechnol. 2020, 62, 189–195. [Google Scholar] [CrossRef]
- Xiu, Z.-L.; Zeng, A.-P. Present State and Perspective of Downstream Processing of Biologically Produced 1,3-Propanediol and 2,3-Butanediol. Appl. Microbiol. Biotechnol. 2008, 78, 917–926. [Google Scholar] [CrossRef]
- Janković, T.; Straathof, A.J.J.; Kiss, A.A. Eco-Efficient Downstream Processing of 1,3-Propanediol Applicable to Various Fermentation Processes. Process Biochem. 2024, 143, 210–224. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Zhao, H.; Gao, M.; Wang, Q. The Performance of Microfiltration Process for Purifying Lactic Acid in the Fermented Broth of Kitchen Waste. Membranes 2023, 13, 280. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, W.; Gryta, M. Comparison of Polypropylene and Ceramic Microfiltration Membranes Applied for Separation of 1,3-PD Fermentation Broths and Saccharomyces Cerevisiae Yeast Suspensions. Membranes 2021, 11, 44. [Google Scholar] [CrossRef]
- Nie, C.; Luan, W.; Chen, X.; Li, L.; Wei, K.; Qiu, M.; Fan, Y. Comparison of Ceramic Microfiltration and Ultrafiltration Membranes for the Clarification of Simulated Sebacic Acid Fermentation Broth. J. Environ. Chem. Eng. 2023, 11, 109820. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Zhao, H.; Wang, X.; Gao, M.; Sun, X.; Wang, Q. The Performance of Ultrafiltration Process to Further Refine Lactic Acid from the Pre-Microfiltered Broth of Kitchen Waste Fermentation. Membranes 2023, 13, 330. [Google Scholar] [CrossRef] [PubMed]
- Isa, M.; Coraglia, D.; Frazier, R.; Jauregi, P. Recovery and Purification of Surfactin from Fermentation Broth by a Two-Step Ultrafiltration Process. J. Membr. Sci. 2007, 296, 51–57. [Google Scholar] [CrossRef]
- Li, Q.; Mannall, G.J.; Ali, S.; Hoare, M. An Ultra Scale-down Approach to Study the Interaction of Fermentation, Homogenization, and Centrifugation for Antibody Fragment Recovery from Rec E. coli. Biotechnol. Bioeng. 2013, 110, 2150–2160. [Google Scholar] [CrossRef]
- Kaeding, T.; DaLuz, J.; Kube, J.; Zeng, A.-P. Integrated Study of Fermentation and Downstream Processing in a Miniplant Significantly Improved the Microbial 1,3-Propanediol Production from Raw Glycerol. Bioprocess. Biosyst. Eng. 2015, 38, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Waszak, M.; Markowska-Szczupak, A.; Gryta, M. Application of Nanofiltration for Production of 1,3-Propanediol in Membrane Bioreactor. Catal. Today 2016, 268, 164–170. [Google Scholar] [CrossRef]
- Bandini, S. Modelling the Mechanism of Charge Formation in NF Membranes: Theory and Application. J. Membr. Sci. 2005, 264, 75–86. [Google Scholar] [CrossRef]
- Omwene, P.I.; Sarihan, Z.B.O.; Karagunduz, A.; Keskinler, B. Bio-Based Succinic Acid Recovery by Ion Exchange Resins Integrated with Nanofiltration/Reverse Osmosis Preceded Crystallization. Food Bioprod. Process. 2021, 129, 1–9. [Google Scholar] [CrossRef]
- Sikder, J.; Chakraborty, S.; Pal, P.; Drioli, E.; Bhattacharjee, C. Purification of Lactic Acid from Microfiltrate Fermentation Broth by Cross-Flow Nanofiltration. Biochem. Eng. J. 2012, 69, 130–137. [Google Scholar] [CrossRef]
- Maroufi, N.; Hajilary, N. Nanofiltration Membranes Types and Application in Water Treatment: A Review. Sustain. Water Resour. Manag. 2023, 9, 142. [Google Scholar] [CrossRef]
- Gilron, J. Experimental Analysis of Negative Salt Rejection in Nanofiltration Membranes. J. Membr. Sci. 2001, 185, 223–236. [Google Scholar] [CrossRef]
- Yadav, D.; Karki, S.; Ingole, P.G. Current Advances and Opportunities in the Development of Nanofiltration (NF) Membranes in the Area of Wastewater Treatment, Water Desalination, Biotechnological and Pharmaceutical Applications. J. Environ. Chem. Eng. 2022, 10, 108109. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers 2019, 11, 1252. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, J.; Li, Y.; Li, Q.; Li, P.; Luo, L.; Zhen, F.; Zheng, G.; Sun, Y. Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation 2022, 8, 562. [Google Scholar] [CrossRef]
- Tomczak, W. The Application of the Nanofiltration Membrane NF270 for Separation of Fermentation Broths. Membranes 2022, 12, 1263. [Google Scholar] [CrossRef]
- Jiraratananon, R.; Sungpet, A.; Luangsowan, P. Performance Evaluation of Nanofiltration Membranes for Treatment of Effluents Containing Reactive Dye and Salt. Desalination 2000, 130, 177–183. [Google Scholar] [CrossRef]
- Du, Y.; Pramanik, B.K.; Zhang, Y.; Dumée, L.; Jegatheesan, V. Recent Advances in the Theory and Application of Nanofiltration: A Review. Curr. Pollut. Rep. 2022, 8, 51–80. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Ang, W.L.; Teow, Y.H.; Mohammad, A.W.; Hilal, N. Nanofiltration Membrane Processes for Water Recycling, Reuse and Product Recovery within Various Industries: A Review. J. Water Process Eng. 2022, 45, 102478. [Google Scholar] [CrossRef]
- Biesheuvel, P.M.; Porada, S.; Elimelech, M.; Dykstra, J.E. Tutorial Review of Reverse Osmosis and Electrodialysis. J. Membr. Sci. 2022, 647, 120221. [Google Scholar] [CrossRef]
- Najid, N.; Hakizimana, J.N.; Kouzbour, S.; Gourich, B.; Ruiz-García, A.; Vial, C.; Stiriba, Y.; Semiat, R. Fouling Control and Modeling in Reverse Osmosis for Seawater Desalination: A Review. Comput. Chem. Eng. 2022, 162, 107794. [Google Scholar] [CrossRef]
- Alshami, A.; Taylor, T.; Ismail, N.; Buelke, C.; Schultz, L. RO System Scaling with Focus on the Concentrate Line: Current Challenges and Potential Solutions. Desalination 2021, 520, 115370. [Google Scholar] [CrossRef]
- Davey, C.J.; Havill, A.; Leak, D.; Patterson, D.A. Nanofiltration and Reverse Osmosis Membranes for Purification and Concentration of a 2,3-Butanediol Producing Gas Fermentation Broth. J. Membr. Sci. 2016, 518, 150–158. [Google Scholar] [CrossRef]
- Seah, M.Q.; Ng, Z.C.; Lai, G.S.; Lau, W.J.; Al-Ghouti, M.A.; Alias, N.H.; Ismail, A.F. Removal of Multiple Pesticides from Water by Different Types of Membranes. Chemosphere 2024, 356, 141960. [Google Scholar] [CrossRef] [PubMed]
- Membrane-Data-Sheet-AFC30AFC40. Available online: https://www.pcimembranes.com/wp-content/uploads/2019/10/Membrane-Data-Sheet-AFC30AFC40.pdf (accessed on 29 May 2025).
- AFC99 Membranes Technical Data. Available online: https://www.pcimembranes.com/wp-content/uploads/2020/03/Membrane-Data-Sheet-AFC99.pdf (accessed on 29 May 2025).
- FilmTecTM BW30 PRO-4040 & BW30 PRO-2540 Element. Available online: https://www.dupont.com/content/dam/water/amer/us/en/water/public/documents/en/RO-FilmTec-BW30-PRO-4040-and-BW30-PRO-2540-PDS-45-D03970-en.pdf (accessed on 29 May 2025).
- PCI Membranes. Available online: https://www.pcimembranes.com/download-centre/data-sheets/ (accessed on 29 May 2025).
- Adeniyi, A.; Mbaya, R.; Popoola, P.; Gomotsegang, F.; Ibrahim, I.; Onyango, M. Predicting the Fouling Tendency of Thin Film Composite Membranes Using Fractal Analysis and Membrane Autopsy. Alex. Eng. J. 2020, 59, 4397–4407. [Google Scholar] [CrossRef]
- Otero-Fernández, A.; Díaz, P.; Otero, J.A.; Ibáñez, R.; Maroto-Valiente, A.; Palacio, L.; Prádanos, P.; Carmona, F.J.; Hernández, A. Morphological, Chemical and Electrical Characterization of a Family of Commercial Nanofiltration Polyvinyl Alcohol Coated Polypiperazineamide Membranes. Eur. Polym. J. 2020, 126, 109544. [Google Scholar] [CrossRef]
- Laalaoua, H.; Boussouga, Y.A.; Nahid, O.; Raouan, S.E.; Koraichi, S.I.; Lhassani, A. Surface Characterization and Interfacial Analysis of Organic Membranes: An Investigation on Electrical and Wettability Phenomenon. Desalination Water Treat. 2022, 257, 34–40. [Google Scholar] [CrossRef]
- Karakulski, K.; Gryta, M.; Bastrzyk, J. Treatment of Effluents from a Membrane Bioreactor by Nanofiltration Using Tubular Membranes. Chem. Pap. 2013, 67, 1164–1171. [Google Scholar] [CrossRef]
- Anike, O.; Cuhorka, J.; Ezeogu, N.; Mikulášek, P. Separation of Antibiotics Using Two Commercial Nanofiltration Membranes—Experimental Study and Modelling. Membranes 2024, 14, 248. [Google Scholar] [CrossRef]
- Kowalska, I. Membrane Technology for the Recovery of Contaminated Single-Phase Acidic Detergents. Sep. Purif. Technol. 2014, 124, 99–106. [Google Scholar] [CrossRef]
- Dudziak, M.; Kudlek, E. Removal of Hardness in wastewater effluent using membrane filtration. Archit. Civ. Eng. Environ. 2019, 12, 141–147. [Google Scholar] [CrossRef]
- Lastra, A.; Gómez, D.; Romero, J.; Francisco, J.L.; Luque, S.; Álvarez, J.R. Removal of Metal Complexes by Nanofiltration in a TCF Pulp Mill: Technical and Economic Feasibility. J. Membr. Sci. 2004, 242, 97–105. [Google Scholar] [CrossRef]
- Maddah, H.A.; Alzhrani, A.S.; Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.; Almalki, A.M. Evaluation of Various Membrane Filtration Modules for the Treatment of Seawater. Appl. Water Sci. 2018, 8, 150. [Google Scholar] [CrossRef]
- Zainal Abidin, M.U.S.; Mukhtar, H.; Shaharun, M.S. Removal of Amines from Wastewater Using Membrane Separation Processes. Appl. Mech. Mater. 2014, 625, 639–643. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Energy-Efficient AnMBRs Technology for Treatment of Wastewaters: A Review. Energies 2022, 15, 4981. [Google Scholar] [CrossRef]
- Gryta, M.; Markowska-Szczupak, A.; Grzechulska-Damszel, J.; Bastrzyk, J.; Waszak, M. The Study of Glycerol-Based Fermentation and Broth Downstream by Nanofiltration. Pol. J. Chem. Technol. 2014, 16, 117–122. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. The Application of Cellulose Acetate Membranes for Separation of Fermentation Broths by the Reverse Osmosis: A Feasibility Study. Int. J. Mol. Sci. 2022, 23, 11738. [Google Scholar] [CrossRef]
- Gryta, M.; Tomczak, W. Microfiltration of Post-Fermentation Broth with Backflushing Membrane Cleaning. Chem. Pap. 2015, 69, 544–552. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Cross-Flow Microfiltration of Glycerol Fermentation Broths with Citrobacter Freundii. Membranes 2020, 10, 67. [Google Scholar] [CrossRef]
- Qadir, D.; Uddin, F.; Nasir, R.; Mukhtar, H. Rejection Analysis and Performance Prediction of Tubular Membranes for Dissolved Salts. Mater. Werkst 2022, 53, 636–643. [Google Scholar] [CrossRef]
- Hilal, N.; Al-Zoubi, H.; Mohammad, A.W.; Darwish, N.A. Nanofiltration of Highly Concentrated Salt Solutions up to Seawater Salinity. Desalination 2005, 184, 315–326. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Hilal, N.; Al-Zoubi, H.; Darwish, N.A. Prediction of Permeate Fluxes and Rejections of Highly Concentrated Salts in Nanofiltration Membranes. J. Membr. Sci. 2007, 289, 40–50. [Google Scholar] [CrossRef]
- Bargeman, G.; Westerink, J.B.; Guerra Miguez, O.; Wessling, M. The Effect of NaCl and Glucose Concentration on Retentions for Nanofiltration Membranes Processing Concentrated Solutions. Sep. Purif. Technol. 2014, 134, 46–57. [Google Scholar] [CrossRef]
- Koyuncu, I.; Topacik, D. Effect of Organic Ion on the Separation of Salts by Nanofiltration Membranes. J. Membr. Sci. 2002, 195, 247–263. [Google Scholar] [CrossRef]
- Prochaska, K.; Staszak, K.; Woźniak-Budych, M.J.; Regel-Rosocka, M.; Adamczak, M.; Wiśniewski, M.; Staniewski, J. Nanofiltration, Bipolar Electrodialysis and Reactive Extraction Hybrid System for Separation of Fumaric Acid from Fermentation Broth. Bioresour. Technol. 2014, 167, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Fukushi, K.; Yamamoto, K. A Study on the Removal of Organic Acids from Wastewaters Using Nanofiltration Membranes. Sep. Purif. Technol. 2008, 59, 17–25. [Google Scholar] [CrossRef]
- Andersson, M.P.; Stipp, S.L.S. Predicting Hydration Energies for Multivalent Ions. J. Comput. Chem. 2014, 35, 2070–2075. [Google Scholar] [CrossRef]
- Kiriukhin, M.Y.; Collins, K.D. Dynamic Hydration Numbers for Biologically Important Ions. Biophys. Chem. 2002, 99, 155–168. [Google Scholar] [CrossRef]
- Kang, S.H.; Chang, Y.K. Removal of Organic Acid Salts from Simulated Fermentation Broth Containing Succinate by Nanofiltration. J. Membr. Sci. 2005, 246, 49–57. [Google Scholar] [CrossRef]
Parameter | Unit | AFC30 | AFC99 | BW30 |
---|---|---|---|---|
Classification | - | NF | RO | RO |
Module length | mm | 1200 | 1200 | 1200 |
Module diameter | mm | 100 | 100 | 100 |
Tubular membrane diameter | mm | 12.3 | 12.3 | - |
Membrane surface | m2 | 0.99 | 0.99 | 2.6 |
Membrane-forming polymer | - | aromatic polyamide | aromatic polyamide | aromatic polyamide |
Maximum process pressure | bar | 60 | 64 | 41 |
Maximum process temperature | °C | 60 | 80 | 45 |
Maximum feed flow | m3/h | 1.5 | 1.5 | 1.4 |
Free chlorine resistance | mg/dm3 | <0.1 | <0.1 | <0.1 |
pH range | - | 1.5–9.5 | 1.5–12.0 | 2.0–11.0 |
Degree of desalination NaCl | % | 70 | 99 | 99.5 |
Water contact angle | deg | 31.0 | 49.5 | 58.0 ± 1.26 |
Hydrophilicity | - | 4 | 4 | 4 |
Anion | Hydrated Radius [nm] | Hydration Energy [kJ/mol] | Molecular Weight [g/mol] |
---|---|---|---|
Cl− | 0.332 | −340 | 35.45 |
NO3− | 0.335 | −300 | 62.00 |
SO42− | 0.379 | −1080 | 96.06 |
PO43− | 0.339 | −2765 | 94.97 |
Organic Acid | pKa | MW [g/mol] | Form in Fermentation Broth |
---|---|---|---|
succinic acid | 4.21 and 5.64 | 118.09 | negative |
lactic acid | 3.08 | 90.08 | negative |
butyric acid | 4.82 | 88.11 | negative |
acetic acid | 4.76 | 60.05 | negative |
formic acid | 3.84 | 46.03 | negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczak, W.; Gryta, M.; Żak, S.; Daniluk, M. Application of Industrial NF and RO Membranes in Separation of Post-Fermentation Solutions: Preliminary Study. Materials 2025, 18, 2779. https://doi.org/10.3390/ma18122779
Tomczak W, Gryta M, Żak S, Daniluk M. Application of Industrial NF and RO Membranes in Separation of Post-Fermentation Solutions: Preliminary Study. Materials. 2025; 18(12):2779. https://doi.org/10.3390/ma18122779
Chicago/Turabian StyleTomczak, Wirginia, Marek Gryta, Sławomir Żak, and Monika Daniluk. 2025. "Application of Industrial NF and RO Membranes in Separation of Post-Fermentation Solutions: Preliminary Study" Materials 18, no. 12: 2779. https://doi.org/10.3390/ma18122779
APA StyleTomczak, W., Gryta, M., Żak, S., & Daniluk, M. (2025). Application of Industrial NF and RO Membranes in Separation of Post-Fermentation Solutions: Preliminary Study. Materials, 18(12), 2779. https://doi.org/10.3390/ma18122779