Application of Novel Polymer Materials Containing Deep Eutectic Solvents for the Separation of Metal Ions from Alkaline Battery Leachates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Primary Alkaline Battery Preparation
2.3. Preparation of Deep Eutectic Solvents
2.4. Preparation of Polymer Materials
2.5. Characterisation of the Surface of the Prepared Polymer Materials Before Sorption Processes
2.6. Separation Processes
2.7. Characterisation of Polymer Materials After Sorption Processes by Scanning Electron Microscopy—Energy-Dispersive Spectroscopy (SEM-EDS)
3. Results and Discussion
3.1. Composition of Synthesised DESs
3.2. Characterisation of Polymer Materials Before Sorption Processes
3.2.1. Contact Angle Measurement of PMs
3.2.2. FTIR-ATR Analysis of Synthesised PMs
3.3. Sorption Processes
3.4. SEM-EDS Characterisation of PMs After Sorption Experiments
3.5. Comparison of Metal Ion Separation Efficiency of ILs/DESs-Based PMs Using Literature Data
Polymer Material Composition | Type of Solution | Removal Efficiency [%] | Main Advantages of Method | Ref. |
---|---|---|---|---|
Polymer inclusion membrane (PIM) consisting of cellulose triacetate (CTA) matrix, o-nitrophenyl pentyl ether (NPOE) plasticiser, and Cyphos IL 101 | Model solutions of Cu(II), Zn(II) and Ni(II) ions and jewellery waste leachate | 92% of Cu(II) 51% of Zn(II) >0.1% of Ni(II) | Ni(II) ions remained in the feed phase because they did not form anionic complexes with chloride ions. | [45] |
PIM consisting of CTA, NPOE, and Cyphos IL 104 | 58% of Cu(II) 40% of Zn(II) >0.1% of Ni(II) | |||
Membranes comprising a mixture of CTA and poly(methyl methacrylate) (PMMA) dioctylephthalate (DOP) and phosphoric acid (D2EHPA) | Model solutions of Co(II), Cu(II), Ni(II), or Pb(II) ions | 31.12% of Ni(II) 32.7% of Co(II) 17.1% of Cu(II) 21.85% of Pb(II) | Addition of Aliquat 336, D2EHPA, and TBP to the membranes enhances the wettability of the materials. A more hydrophilic membrane surface increases the efficiency of metal ion removal. | [47] |
Membrane consisting of CTA, PMMA, DOP and Aliquat 336 | 100% of Ni(II) 23.5% of Co(II) 11.6% of Cu(II) 27.55% of Pb(II) | |||
Membrane consisting of CTA, PMMA, DOP, and tributyl phosphate (TBP) | 4.48% of Ni(II) 29.5% of Co(II) 14.9% of Cu(II) 14.57% of Pb(II) | |||
Polymer membrane containing CTA, Aliquat 336 (or D2EHPA), and NPOE | Tecolutla seawater | 87% of Pb(II) 90% of Cd(II) 94% of Zn(II) | As the concentration of metal ions decreased, the transport of metal ions increased (the competition for the active sites did not limit transport). | [48] |
PIM composed of CTA, D2EHPA, and of acetylated kraft lignin (AKL) | Synthetic wastewater containing Cu(II) and Ni(II) ions | 62% of Zn(II) 26% of Ni(II) | In case of binary Zn/Ni solution, a decrease in the extraction percentages of Zn(II) and Ni(II) ions was observed because the co-transport of Zn(II) with Ni(II) reduces the concentration of D2EHPA in the membrane. | [50] |
Polymer adsorptive membranes (PAMs) based on PVC, ADO, and Aliquat 336 | Acidic leachate of computer pins consisting of Zn(II) and Cu(II) ions | 96.85% of Cu(II) 95.42% of Zn(II) | DES-containing PAM achieved approx. 97% of copper(II) and 95% of zinc(II) ions after 1 h of separation processes, while similar amounts of these metal ions were separated after 3 h with Aliquat 336-based PAM. | [28] |
PAMs consisting of PVC, ADO, and DES (diacetamide-Aliquat 336) | 96.63% of Cu(II) 95.42% of Zn(II) |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, X.; Robles, A.; Vikström, T.; Väänänen, P.; Zackrisson, M.; Ye, G. A novel process on the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries. J. Hazard. Mater. 2021, 411, 124928. [Google Scholar] [CrossRef]
- Gianvincenzi, M.; Mosconi, E.M.; Marconi, M.; Tola, F. Battery waste management in Europe: Black mass hazardousness and recycling strategies in the light of an evolving competitive regulation. Recycling 2024, 9, 13. [Google Scholar] [CrossRef]
- Dar, A.A.; Chen, Z.; Zhang, G.; Hu, J.; Zaghib, K.; Deng, S.; Wang, X.; Haghighat, F.; Mulligan, C.N.; An, C.; et al. Sustainable Extraction of Critical Minerals from Waste Batteries: A Green Solvent Approach in Resource Recovery. Batteries 2025, 11, 51. [Google Scholar] [CrossRef]
- Regulation (EU) 2023/1542 of the European Parliament and of the Council Concerning Batteries and Waste Batteries Amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and Repealing Directive 2006/66/EC. Available online: https://eur-lex.europa.eu/eli/reg/2023/1542/oj/eng (accessed on 25 March 2025).
- Ginster, R.; Blömeke, S.; Popien, J.-L.; Scheller, C.; Cerdas, F.; Herrmann, C.; Spengler, T.S. Circular battery production in the EU: Insights from integrating life cycle assessment into system dynamics modeling on recycled content and environmental impacts. J. Ind. Ecol. 2024, 28, 1165–1182. [Google Scholar] [CrossRef]
- Cui, K.; Zhao, M.-C.; Li, Y.; Atrens, A.; Zhang, F. Recycling of spent lithium iron phosphate batteries: Research progress based on environmental protection and sustainable development technology. Sep. Purif. Technol. 2025, 354, 128982. [Google Scholar] [CrossRef]
- Tran, L.-H.; Tanong, K.; Jabir, A.D.; Mercier, G.; Blais, J.-F. Hydrometallurgical process and economic evaluation for recovery of zinc and manganese from spent alkaline batteries. Metals 2020, 10, 1175. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Valdrez, I.V.; Almeida, M.F.; Dias, J.M. Direct recovery of Zn from wasted alkaline batteries through selective anode’s separation. J. Environ. Manag. 2022, 321, 115979. [Google Scholar] [CrossRef]
- Skrzekut, T.; Piotrowicz, A.; Noga, P.; Wędrychowicz, M.; Bydałek, A.W. Studies of selective recovery of zinc and manganese from alkaline batteries scrap by leaching and precipitation. Materials 2022, 15, 3966. [Google Scholar] [CrossRef]
- Baba, A.A.; Adekola, F.A.; Bale, R.B.; Alabi, A.G.F.; Raji, M.A. Economic metals rescue from spent zinc–carbon batteries for industrial value additions. In Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies; The Minerals, Metals and Materials Series; Chen, X., Zhong, Y., Zhang, L., Howarter, J.A., Baba, A.A., Wang, C., Sun, Z., Zhang, M., Olivetti, E., Luo, A., et al., Eds.; Springer: Cham, Switzerland, 2020; pp. 49–55. [Google Scholar] [CrossRef]
- Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid. J. Power Sources 2016, 325, 220–228. [Google Scholar] [CrossRef]
- García, N.M.; Cano, B.D.; Valverde, J.L.; Heitz, M.; Ramirez, A.A. Extraction and separation of potassium, zinc and manganese issued from spent alkaline batteries by a three-unit hydrometallurgical process. J. Chem. Technol. Biotechnol. 2024, 99, 1553–1563. [Google Scholar] [CrossRef]
- Lannoo, S.; Vilas-Boas, A.; Maryam Sadeghi, S.; Jesus, J.; Soares, H.M.V.M. An environmentally friendly closed loop process to recycle raw materials from spent alkaline batteries. J. Clean. Prod. 2019, 236, 117612. [Google Scholar] [CrossRef]
- Maryam Sadeghi, S.; Jesus, J.; Soares, H.M.V.M. A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries. Waste Manag. 2020, 113, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Domańska, U.; Wiśniewska, A.; Dąbrowski, Z.; Kolasa, D.; Wróbel, K.; Lach, J. Recovery of Metals from the “Black Mass” of Waste Portable Li-Ion Batteries with Choline Chloride-Based Deep Eutectic Solvents and Bi-Functional Ionic Liquids by Solvent Extraction. Molecules 2024, 29, 3142. [Google Scholar] [CrossRef]
- Elhamarnah, Y.; Qiblawey, H.; Nasser, M. A review on deep eutectic solvents as the emerging class of green solvents for membrane fabrication and separations. J. Mol. Liq. 2024, 398, 124250. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Taghizadeh, A.; Vatanpour, V.; Ganjali, M.R.; Saeb, M.R. Deep eutectic solvents in membrane science and technology: Fundamental preparation, application, and future perspective. Sep. Purif. Technol. 2021, 258, 118015. [Google Scholar] [CrossRef]
- Jha, D.; Maheshwari, P.; Singh, Y.; Haider, M.B.; Kumar, R.; Balathanigaimani, M.S. A comparative review of extractive desulfurization using designer solvents: Ionic liquids & deep eutectic solvents. J. Energy Inst. 2023, 110, 101313. [Google Scholar] [CrossRef]
- Siekierka, A.; Callahan, D.L.; Kujawski, W.; Dumée, L.F. Deep eutectic solvent assisted electrodialysis towards selective resource recovery from model spent batteries effluents. Desalination 2024, 580, 117559. [Google Scholar] [CrossRef]
- Abranches, D.O.; Coutinho, J.A.P. Everything you wanted to know about deep eutectic solvents but were afraid to be told. Annu. Rev. Chem. Biomol. Eng. 2023, 14, 141–163. [Google Scholar] [CrossRef]
- Duque, A.; Sanjuan, A.; Bou-Ali, M.M.; Alonso, R.S.; Campanero, M.A. Physicochemical characterization of hydrophobic type III and type V deep eutectic solvents based on carboxylic acids. J. Mol. Liq. 2023, 392, 123431. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, G.; Huang, Q.; Yin, C.; Jiang, X.; Yang, X.; Xie, Q. Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. J. Mol. Liq. 2021, 343, 117670. [Google Scholar] [CrossRef]
- Bastos, H.; Gallestegui, A.; de Lacalle, J.L.; Schaeffer, N.; Pringle, J.M.; Mecerreyes, D.; Pozo-Gonzalo, C. Ionic polymer absorbents inspired by deep eutectic solvents to recover cobalt and nickel. New J. Chem. 2024, 48, 14672. [Google Scholar] [CrossRef]
- Carreira, A.R.F.; Nogueira, A.; Crema, A.P.S.; Passos, H.; Schaeffer, N.; Coutinho, J.A.P. Super concentrated HCl in a deep eutectic solvent as media for the integrated leaching and separation of metals from end-of-life lithium-ion batteries. J. Chem. Eng. 2023, 475, 146374. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, P.; Luo, G.; Chen, L.; Li, X.; Chao, Y.; Zhu, W. One-step selective separation and efficient recovery of valuable metals from spent lithium batteries by phosphoric acid-base deep eutectic solvent. Green Chem. Eng. 2023, 5, 390–398. [Google Scholar] [CrossRef]
- Kaczorowska, M.A.; Bożejewicz, D.; Witt, K. Application of deep eutectic mixture and ionic liquid as carrier in polymer adsorptive membranes for removal of copper(II) and zinc(II) ions from computer scrap leachates. Desalin. Water Treat. 2023, 316, 505–513. [Google Scholar] [CrossRef]
- Available online: https://www.chemicalbook.com/ (accessed on 25 March 2025).
- Khazalpour, S.; Yarie, M.; Kianpour, E.; Amani, A.; Asadabadi, S.; Seyf, J.-Y.; Razaeivala, M.; Azizian, S.; Zolfigol, M.A. Applications of phosphonium-based ionic liquids in chemical processes. J. Iran Chem. Soc. 2020, 17, 1775–1917. [Google Scholar] [CrossRef]
- Liu, C.; Mei, G.; Yu, M.; Cheng, Q.; Yang, S. New applications of deep eutectic solvents for separation of quartz and magnetite. Chem. Phys. Lett. 2021, 762, 138152. [Google Scholar] [CrossRef]
- Sant’Ana, P.L.; Bortoleto, J.R.R.; da Cruz, N.C.; Rangel, E.C.; Durrant, S.F.; Schreiner, W.H. Surface functionalization of polyvinyl chloride by plasma immersion techniques. Polímeros 2020, 30, e2020044. [Google Scholar] [CrossRef]
- Govindappa, H.; Bhat, M.P.; Uthappa, U.T.; Sriram, G.; Altalhi, T.; Kumar, S.P.; Kurkuri, M. Fabrication of novel polymer inclusion membrane from recycled polyvinyl chloride for the real-time extraction of arsenic(V) from water samples in a continuous process. Chem. Eng. Res. Des. 2022, 182, 145–154. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Lin, J.-C.; Hai, W.; Tan, H.-W.; Luo, Y.-W.; Xie, X.-L.; Cao, Y.; He, F.-A. A novel crosslinked β-cyclodextrin-based polymer for removing methylene blue from water with high efficiency. Colloids Surf. A Physicochem. Eng. Asp. 2019, 56, 59–68. [Google Scholar] [CrossRef]
- Witt, K.; Kaczorowska, M.A.; Bożejewicz, D. Efficient, fast, simple, and eco-friendly methods for separation of toxic chromium(VI) ions based on ion exchangers and polymer materials impregnated with Cyphos IL 101, Cyphos IL 104, or D2EHPA. Environ. Sci. Pollut. Res. 2024, 31, 7977–7993. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Spectroscopic_Reference_Tables/Infrared_Spectroscopy_Absorption_Table (accessed on 25 March 2025).
- Bożejewicz, D.; Witt, K.; Kaczorowska, M.A. Influence of the type of polymer and plasticizer on the properties and efficiency of membranes containing acetylacetone carrier for the removal of Cd(II) ions from aqueous solution. Desalin. Water Treat. 2023, 316, 483–492. [Google Scholar] [CrossRef]
- Xu, H.; Xu, D.C.; Wang, Y. Natural indicates for the chemical hardness/softness of metal cations and ligands. ACS Omega 2017, 2, 7185–7193. [Google Scholar] [CrossRef]
- Witt, K.; Bożejewicz, D.; Kaczorowska, M.A. N,N′-Bis(salicylidene)ethylenediamine (Salen) as an active compound for the recovery of Ni(II), Cu(II), and Zn(II) ions from aqueous solution. Membranes 2020, 10, 60. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Adsorption of metal ions by clays and inorganic solids. RSC Adv. 2014, 4, 28537–28586. [Google Scholar] [CrossRef]
- Admeliluyi, F.T.; Nze, J.C. Multiple adsorption of heavy metal ions in aqueous solution using activated carbon from Nigerian bamboo. Int. J. Res. Eng. Technol. 2016, 5, 164–169. [Google Scholar]
- Tarhouchi, S.; Hlaibi, M. Kinetic control aspects and mechanisms in oriented membrane process for extraction and recovery of ascorbic acid compound. Environ. Sci. Pollut. Res. 2024, 32, 63033–63048. [Google Scholar] [CrossRef]
- Ghasemi, H.; Abu-Zahra, N.; Baig, N.; Abdulazeez, I.; Aljundi, I.H. Enhancing fouling resistance and separation performance of polyethersulfone membrane through surface grafting with copolymerized termo-responsive polymer and copper oxide nanoparticles. Chem. Eng. J. Adv. 2023, 16, 100528. [Google Scholar] [CrossRef]
- Majidi, E.; Bakhshi, H. Hydrophobic deep eutectic solvents characterization and performance for efficient removal of heavy metals from aqueous media. J. Water Process Eng. 2024, 57, 104680. [Google Scholar] [CrossRef]
- Radzymińska-Lenarcik, E.; Pyszka, I.; Urbaniak, W. The use of polymer membranes for the recovery of copper, zinc and nickel from model solutions and jewellery waste. Polymers 2023, 15, 1149. [Google Scholar] [CrossRef] [PubMed]
- Kagaya, S.; Hida-Matsuda, K.; Tsuzaka, S.; Minami, C.; Gemmei-Ide, M.; Cattrall, R.W.; Kolev, S.D. The determination of zinc using flow injection and continuous flow analysis combined with a polymer inclusion film-coated column: Application to the determination of zinc in alloys and commercial lithium chloride. Talanta 2023, 259, 124545. [Google Scholar] [CrossRef] [PubMed]
- Mesrouk, S.; Sadi, F. Synthesis and characterization of low-cost plasticized polymeric membranes for separation of bivalent cations. Cellulose Chem. Technol. 2024, 58, 169–179. [Google Scholar] [CrossRef]
- Macías, M.; de San Miguel, R.E. On the Use of Polymer Inclusion Membranes for the Selective Separation of Pb(II), Cd(II), and Zn(II) from Seawater. Membranes 2023, 13, 512. [Google Scholar] [CrossRef]
- Ncib, S.; Chibani, A.; Barhoumi, A.; Larchet, C.; Dammak, L.; Elaloui, E.; Bouguerra, W. Separation of copper and nickel from synthetic wastewater by polymer inclusion membrane containing di(2-ethylhexyl)phosphoric acid. Polym. Bull. 2023, 80, 12177–12192. [Google Scholar] [CrossRef]
- Mahmoud, H.; Ncib, S.; Othmen, K.; Al-Hazmy, S.M.; Dammak, L.; Elaloui, E.; Bouguerra, W. Evaluation of poly(vinyl chloride)/2-nitrophenyl octyl ether/di(2-ethylhexyl) phosphoric acid polymer inclusion membrane performance for zinc recovery and separation. Chem. Afr. 2024, 7, 2125–2137. [Google Scholar] [CrossRef]
HBD | ||||||
---|---|---|---|---|---|---|
Symbol of DES | Name | Mass [g] | Molar Mass [g/mol] | Density [g/mL] | Melting Point [°C] | Boiling Point [°C] |
DES-1 | Diacetamide | 0.385 | 101.1 | 1.3846 | 75.5–76 | 222–233 |
DES-2 | Diacetamide | 0.265 | ||||
DES-3 | Diacetamide | 0.501 | ||||
HBA | ||||||
Symbol of DES | Name | Mass [g] | Molar Mass [g/mol] | Density [g/mL] | Melting Point [°C] | Boiling Point [°C] |
DES-1 | Cyphos IL 101 | 1.009 | 519.31 | 0.895 | −70 | no data * |
DES-2 | Cyphos IL 104 | 1.016 | 773.27 | 0.887 | −70 | no data * |
DES-3 | Aliquat 336 | 1.015 | 446.25 | 0.88 | −20 | 225 |
Symbol of PM | Polymer Base | Chelating Agent | Plasticiser | |||
---|---|---|---|---|---|---|
Name | Mass [g] | Name | Mass [g] | Name | Mass [g] | |
PM-0 | PVC | 0.504 | - | - | ADO | 0.236 |
PM-1 | PVC | 0.509 | DES-1 | 0.215 | ADO | 0.203 |
PM-2 | PVC | 0.505 | DES-2 | 0.208 | ADO | 0.214 |
PM-3 | PVC | 0.505 | Cyphos IL 101 | 0.196 | ADO | 0.194 |
PM-4 | PVC | 0.503 | Cyphos IL 104 | 0.201 | ADO | 0.200 |
PM-5 | PVC | 0.504 | DES-3 | 0.203 | ADO | 0.214 |
PM-6 | PVC | 0.508 | Aliquat 336 | 0.205 | ADO | 0.204 |
CA | 74.42° | 78.9° | 60.32° | 69.52° | 43.8° |
---|---|---|---|---|---|
Figure | |||||
PM | PM-0 | PM-1 | PM-2 | PM-3 | PM-4 |
PMs | qt [mg/g] | ||
---|---|---|---|
Ni(II) | Mn(II) | Zn(II) | |
PM-0 | 0.000034 | 0.000676 | 0.077703 |
PM-1 | 0.000676 | 0.002365 | 0.556983 |
PM-2 | 0.000719 | 0.000676 | 0.529591 |
PM-3 | 0.000763 | 0.002027 | 0.548274 |
PM-4 | 0.000553 | 0.001014 | 0.548274 |
PM-5 | 0.000766 | 0.001014 | 0.566521 |
PM-6 | 0.000888 | 0.001689 | 0.553203 |
PM-0 | 0.000034 | 0.000676 | 0.077703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bożejewicz, D.; Kaczorowska, M.A. Application of Novel Polymer Materials Containing Deep Eutectic Solvents for the Separation of Metal Ions from Alkaline Battery Leachates. Materials 2025, 18, 2768. https://doi.org/10.3390/ma18122768
Bożejewicz D, Kaczorowska MA. Application of Novel Polymer Materials Containing Deep Eutectic Solvents for the Separation of Metal Ions from Alkaline Battery Leachates. Materials. 2025; 18(12):2768. https://doi.org/10.3390/ma18122768
Chicago/Turabian StyleBożejewicz, Daria, and Małgorzata A. Kaczorowska. 2025. "Application of Novel Polymer Materials Containing Deep Eutectic Solvents for the Separation of Metal Ions from Alkaline Battery Leachates" Materials 18, no. 12: 2768. https://doi.org/10.3390/ma18122768
APA StyleBożejewicz, D., & Kaczorowska, M. A. (2025). Application of Novel Polymer Materials Containing Deep Eutectic Solvents for the Separation of Metal Ions from Alkaline Battery Leachates. Materials, 18(12), 2768. https://doi.org/10.3390/ma18122768