Superconductivity in High-Entropy Alloy System Containing Tb
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure
3.2. Morphology and Chemical Composition
3.3. Physical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater. Sci. 2021, 120, 100754. [Google Scholar] [CrossRef]
- Youssef, K.M.; Zaddach, A.J.; Niu, C.; Irving, D.L.; Koch, C.C. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Mater. Res. Lett. 2015, 3, 95–99. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hong, U.; Yeh, J.; Shih, H. Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 °C high-purity water. Scr. Mater. 2006, 54, 1997–2001. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.W. Recent progress in high-entropy alloys. Eur. J. Control. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J. Discovery of a Superconducting High-Entropy Alloy. Phys. Rev. Lett. 2014, 113, 107001. [Google Scholar] [CrossRef]
- Sarkar, N.; Prajapat, C.; Ghosh, P.; Garg, N.; Babu, P.; Wajhal, S.; Krishna, P.; Gonal, M.; Tewari, R.; Mishra, P. Investigations on superconductivity in an equi-atomic disordered Hf-Nb-Ta-Ti-V high entropy alloy. Intermetallics 2022, 144, 107503. [Google Scholar] [CrossRef]
- Sun, L.; Cava, R.J. High-entropy alloy superconductors: Status, opportunities, and challenges. Phys. Rev. Mater. 2019, 3, 090301. [Google Scholar] [CrossRef]
- Harayama, Y.; Kitagawa, J. Superconductivity in Al-Nb-Ti-V-Zr Multicomponent Alloy. J. Supercond. Nov. Magn. 2021, 34, 2787–2794. [Google Scholar] [CrossRef]
- Sobota, P.; Rusin, B.; Gnida, D.; Topolnicki, R.; Ossowski, T.; Nowak, W.; Pikul, A.; Idczak, R. New type of Ti-rich HEA superconductors with high upper critical field. Acta Mater. 2025, 285, 120666. [Google Scholar] [CrossRef]
- Strong, D.; Cava, R.J. Superconductivity in the face-centered cubic W-M-Rh-Ir-Pt M = {Mo, Nb, Ta, Re} high-entropy alloy. J. Mater. Sci. 2024, 59, 10347–10356. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Kasem, M.R.; Matsuda, T.D. Superconductivity in CuAl2-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a high-entropy-alloy transition metal site. Mater. Res. Lett. 2021, 9, 141–147. [Google Scholar] [CrossRef]
- Feuerbacher, M.; Heidelmann, M.; Thomas, C. Hexagonal High-entropy Alloys. Mater. Res. Lett. 2015, 3, 1–6. [Google Scholar] [CrossRef]
- Yang, W.; Xiao, G.; Ren, Z. Synthesis, magnetic and superconducting properties of high-entropy rare-earth boride (Dy0.2Ho0.2Er0.2Tm0.2Lu0.2)(Rh,Ru)4B4. Ceram. Int. 2024, 50, 33839–33845. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Clem, J.R. Granular and superconducting-glass properties of the high-temperature superconductors. Phys. Supercond. 1988, 153–155, 50–55. [Google Scholar] [CrossRef]
- Thoburn, W.C.; Legvold, S.; Spedding, F.H. Magnetic Properties of Terbium Metal. Phys. Rev. 1958, 112, 56–58. [Google Scholar] [CrossRef]
- Hill, R.W. The specific heats of Tb2O3 and Tb4O7 between 0.5 and 22 K. J. Phys. C Solid State Phys. 1986, 19, 673. [Google Scholar] [CrossRef]
- McMillan, W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331–344. [Google Scholar] [CrossRef]
- Tari, A. The Specific Heat of Matter at Low Temperatures; Imperial College Press: London, UK, 2003. [Google Scholar] [CrossRef]
- Gopal, E. Specific Heats at Low Temperatures; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar] [CrossRef]
- Sidorov, V.A.; Nicklas, M.; Pagliuso, P.G.; Sarrao, J.L.; Bang, Y.; Balatsky, A.V.; Thompson, J.D. Superconductivity and Quantum Criticality in CeCoIn5. Phys. Rev. Lett. 2002, 89, 157004. [Google Scholar] [CrossRef] [PubMed]
- Clogston, A.M. Upper Limit for the Critical Field in Hard Superconductors. Phys. Rev. Lett. 1962, 9, 266–267. [Google Scholar] [CrossRef]
- Parks, R.D. Superconductivity; Taylor and Francis: Oxford, UK, 1969. [Google Scholar] [CrossRef]
- Helfand, E.; Werthamer, N.R. Temperature and Purity Dependence of the Superconducting Critical Field, Hc2. II. Phys. Rev. 1966, 147, 288–294. [Google Scholar] [CrossRef]
- Werthamer, N.R.; Helfand, E.; Hohenberg, P.C. Temperature and Purity Dependence of the Superconducting Critical Field, Hc2. III. Electron Spin and Spin-Orbit Effects. Phys. Rev. 1966, 147, 295–302. [Google Scholar] [CrossRef]
- Maki, K. Effect of Pauli Paramagnetism on Magnetic Properties of High-Field Superconductors. Phys. Rev. 1966, 148, 362–369. [Google Scholar] [CrossRef]
- Krnel, M.; Jelen, A.; Vrtnik, S.; Luzar, J.; Gačnik, D.; Koželj, P.; Wencka, M.; Meden, A.; Hu, Q.; Guo, S.; et al. The Effect of Scandium on the Structure, Microstructure and Superconductivity of Equimolar Sc-Hf-Nb-Ta-Ti-Zr Refractory High-Entropy Alloys. Materials 2022, 15, 1122. [Google Scholar] [CrossRef]
- Sobota, P.; Topolnicki, R.; Ossowski, T.; Pikula, T.; Gnida, D.; Idczak, R.; Pikul, A. Superconductivity in high-entropy alloy system containing Th. Sci. Rep. 2023, 13, 16317. [Google Scholar] [CrossRef]
- Nowak, W.; Rusin, B.; Babij, M.; Topolnicki, R.; Ossowski, T.; Pikul, A.; Idczak, R. Superconductivity in a New High-Entropy Alloy (NbTi)0.67(MoHfV)0.33. Metall. Mater. Trans. A 2024, 55, 3789–3798. [Google Scholar] [CrossRef]
- Tinkham, M. Introduction to Superconductivity; Dover Books on Physics Series; Dover Publications: New York, NY, USA, 2004. [Google Scholar]
Element | Ti | V | Tb | Hf | Nb | |
---|---|---|---|---|---|---|
(VNb)0.67(TiTbHf)0.33 | at.% | 12.13 ± 0.63 | 37.92 ± 0.89 | 2.73 ± 0.43 | 14.13 ± 1.26 | 33.09 ± 1.81 |
(VNb)0.753(TiHf)0.247: Nb-rich | at.% | 12.95 ± 0.65 | 38.32 ± 0.79 | — | 12.53 ± 0.66 | 36.19 ± 0.83 |
(VNb)0.753(TiHf)0.247: Nb-poor | at.% | 13.09 ± 0.70 | 39.30 ± 1.2 | — | 15.06 ± 1.0 | 32.56 ± 2.0 |
Parameter | (VNb)0.753(TiHf)0.247 | (VNb)0.67(TiTbHf)0.33 |
---|---|---|
5.2(1) K | 4.6(1) K | |
9.1(1) mJ K−2 mol−1 | 11.1(2) mJ K−2 mol−1 | |
0.079(4) mJ K−4 mol−1 | 0.085(9) mJ K−4 mol−1 | |
5.6(4) mJ K−6 mol−1 | 6.4(1) mJ K−6 mol−1 | |
291(5) K | 284(10) K | |
1.49 | 1.05 | |
0.68(1) | 0.62(1) | |
3.9(1) states eV−1 f.u.−1 | 4.7(1) states eV−1 f.u.−1 | |
2.3(1) states eV−1 f.u.−1 | 2.9(1) states eV−1 f.u.−1 | |
0.11 T | 0.14 T | |
3.25 | 4.53 | |
0.0063 T | 0.0097 T | |
6.8 T | 6.1 T | |
7.9(1) T | 7.3(1) T | |
9.4(1) T | 8.5(1) T | |
1.18 | 1.20 | |
6.4 nm | 6.7 nm | |
320 nm | 246 nm | |
50 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobota, P.; Rusin, B.; Gnida, D.; Pikul, A.; Idczak, R. Superconductivity in High-Entropy Alloy System Containing Tb. Materials 2025, 18, 2747. https://doi.org/10.3390/ma18122747
Sobota P, Rusin B, Gnida D, Pikul A, Idczak R. Superconductivity in High-Entropy Alloy System Containing Tb. Materials. 2025; 18(12):2747. https://doi.org/10.3390/ma18122747
Chicago/Turabian StyleSobota, Piotr, Bartosz Rusin, Daniel Gnida, Adam Pikul, and Rafał Idczak. 2025. "Superconductivity in High-Entropy Alloy System Containing Tb" Materials 18, no. 12: 2747. https://doi.org/10.3390/ma18122747
APA StyleSobota, P., Rusin, B., Gnida, D., Pikul, A., & Idczak, R. (2025). Superconductivity in High-Entropy Alloy System Containing Tb. Materials, 18(12), 2747. https://doi.org/10.3390/ma18122747