Research Status of Mechanical Properties and Microstructure of Fiber-Reinforced Desert Sand Concrete
Abstract
:1. Introduction
2. Basic Characteristic of Desert Sand (DS)
2.1. Physical Properties of DS
2.2. Chemical Properties of DS
3. Desert Sand Concrete
3.1. Workability of Desert Sand Concrete
3.2. Mechanical Properties of Desert Sand Concrete
4. The Effect of Single Fiber Addition on DSC Performance
4.1. Steel Fibers (SFs)
4.2. Polypropylene Fibers (PPFs)
4.3. Basalt Fibers (BFs)
4.4. Summary
5. The Effect of Hybrid Fibers on DSC Performance
6. Microstructure and Mechanisms of FRDSC
6.1. XRD Analysis
6.2. Fiber Microstructure
6.3. Reinforcement Mechanism
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSRR | Desert Sand Replacement Ratio |
FRDSC | Fiber-Reinforced Desert Sand Concrete |
SEM | Scanning Electron Microscopy |
XRD | X-ray Diffraction |
C-S-H | Calcium Silicate Hydrate |
DSC | Desert Sand Concrete |
SF | Steel Fiber |
PPF | Polypropylene Fiber |
BF | Basalt Fiber |
PVAF | Polyvinyl Alcohol Fiber |
GF | Glass Fiber |
CF | Carbon Fiber |
DS | Desert Sand |
NDS | Natural Desert Sand |
RCS | Recycled Crushed Sand |
ITZ | Interfacial Transition Zone |
CFST | Concrete-filled Steel Tubular |
SFRC | Steel-Fiber-Reinforced Concrete |
ACI | American Concrete Institute |
SEM | Scanning Electron Microscopy |
RCA | Recycled Coarse Aggregate |
NA | Natural Aggregate |
EDS | Energy-Dispersive Spectroscopy |
FA | Fly Ash |
SiF | Silica Fume |
GFDSC | Glass Fiber Desert Sand Concrete |
References
- Mundra, S.; Sindhi, P.R.; Chandwani, V.; Nagar, R.; Agrawal, V. Crushed rock sand—An economical and ecological alternative to natural sand to optimize concrete mix. Perspect. Sci. 2016, 8, 345–347. [Google Scholar] [CrossRef]
- Nanthagopalan, P.; Santhanam, M. Fresh and hardened properties of self-compacting concrete produced with manufactured sand. Cem. Concr. Compos. 2011, 33, 353–358. [Google Scholar] [CrossRef]
- Miatto, A.; Schandl, H.; Fishman, T.; Tanikawa, H. Global patterns and trends for non-metallic minerals used for construction. J. Ind. Ecol. 2017, 21, 924–937. [Google Scholar] [CrossRef]
- Gallagher, L. Sand and sustainability: Finding new solutions for environmental governance of global sand resources. Eco-Effic. Constr. Build. Mater. 2019. [Google Scholar] [CrossRef]
- Habert, G. Assessing the environmental impact of conventional and ‘green’ cement production. Eco-Effic. Constr. Build. Mater. 2014, 199–238. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Concrete with recycled glass as fine aggregates. ACI Mater. J. 2014, 111, 47–57. [Google Scholar] [CrossRef]
- Bendixue, M.; Best, J.; Hackney, C. Time is running out for sand. Nature 2019, 571, 29–31. [Google Scholar] [CrossRef]
- Krause, J.C.; Diesing, M.; Arlt, G. The physical and biological impact of sand extraction: A case study of the western Baltic Sea. J. Coastal Res. 2010, 51, 215–226. [Google Scholar] [CrossRef]
- Sreebha, S.; Padmalal, D. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: A case study. Environ. Manag. 2011, 47, 130–140. [Google Scholar] [CrossRef]
- Lai, X.; Shankman, D.; Huber, C.; Yesou, H.; Huang, Q.; Jiang, J. Sand mining and increasing Poyang Lake’s discharge ability: A reassessment of causes for lake decline in China. J. Hydrol. 2014, 519, 1698–1706. [Google Scholar] [CrossRef]
- Forster, A.; Lawrence, D.J.D.; Highley, D.E.; Cheney, C.S.; Arrick, A. Applied geological mapping for planning and development: An example from Wigan, UK. Q. J. Eng. Geol. Hydrogeol. 2004, 37, 301–316. [Google Scholar] [CrossRef]
- Cortes, D.; Kim, H.-K.; Palomino, A.; Santamarina, J. Rheological and mechanical properties of mortars prepared with natural and manufactured sands. Cem. Concr. Res. 2008, 38, 1142–1147. [Google Scholar] [CrossRef]
- Gonçalves, J.P.; Tavares, L.M.; Toledo Filho, R.D.; Fairbairn, E.M.R.; Cunha, E.R. Comparison of natural and manufactured fine aggregates in cement mortars. Cem. Concr. Res. 2007, 37, 924–932. [Google Scholar] [CrossRef]
- Dias, W.P.S.; Seneviratne, G.A.P.S.N.; Nanayakkara, S.M.A. Offshore sand for reinforced concrete. Constr. Build. Mater. 2008, 22, 1377–1384. [Google Scholar] [CrossRef]
- Wang, D.; Gong, Q.; Yuan, Q.; Luo, S. Review of the properties of fiber-reinforced polymer-reinforced seawater-sea sand concrete. J. Mater. Civ. Eng. 2021, 33, 04021285. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Properties of self-compacting concrete prepared with recycled glass aggregate. Cem. Concr. Compos. 2009, 31, 107–113. [Google Scholar] [CrossRef]
- Yuksel, I.; Siddique, R.; Ozkan, O. Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Constr. Build. Mater. 2011, 25, 967–972. [Google Scholar] [CrossRef]
- Gao, W.; Zhou, W.; Lyu, X.; Liu, X.; Su, H.; Li, C.; Wang, H. Comprehensive utilization of steel slag: A review. Powder Technol. 2023, 422, 118449. [Google Scholar] [CrossRef]
- Ahmad, J.; Zaid, O.; Siddique, M.S.; Aslam, F.; Alabduljabbar, H.; Khedher, K.M. Mechanical and durability characteristics of sustainable coconut fibers reinforced concrete with incorporation of marble powder. Mater. Res. Express 2021, 8, 075504. [Google Scholar] [CrossRef]
- Rahmani, F.; Kaci, S.; Ouali, M.O. On the use of self-compacting concrete based on desert sand and granite powder. Cem. Lime Concr. 2024, 29, 171–187. [Google Scholar] [CrossRef]
- Karimi, H.R.; Aliha, M.R.M.; Khedri, E.; Mousavi, A.; Salehi, S.M.; Haghighatpour, P.J.; Ebneabbasi, P. Strength and cracking resistance of concrete containing different percentages and sizes of recycled tire rubber granules. J. Build. Eng. 2023, 67, 106033. [Google Scholar] [CrossRef]
- Tsoar, H. The ecological background, deterioration and reclamation of desert dune sand. Agric. Ecosyst. Environ. 1990, 33, 147–170. [Google Scholar] [CrossRef]
- Erzaij, K.R.; Ali, R.H. The effect of desert environment on the cost of construction projects (materials transportation). Appl. Mech. Mater. 2020, 897, 152–156. [Google Scholar] [CrossRef]
- Zhang, G.; Song, J.; Yang, J.; Liu, X. Performance of mortar and concrete made with a fine aggregate of desert sand. Build. Environ. 2006, 41, 1478–1481. [Google Scholar] [CrossRef]
- Dong, W.; Shen, X.; Xue, H.; He, J.; Liu, Y. Research on the freeze-thaw cyclic test and damage model of Aeolian sand lightweight aggregate concrete. Constr. Build. Mater. 2016, 123, 792–799. [Google Scholar] [CrossRef]
- Abdul-Razzak, A.A.; Ali, A.A.M. Influence of cracked concrete models on the nonlinear analysis of high strength steel fibre reinforced concrete corbels. Compos. Struct. 2011, 93, 2277–2287. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, F.; Torgal, F.; Zhang, Y. Shear behaviour of steel fibre reinforced self-consolidating concrete beams based on the modified compression field theory. Compos. Struct. 2012, 94, 2440–2449. [Google Scholar] [CrossRef]
- Lee, S.; Won, J. Flexural behavior of precast reinforced concrete composite members reinforced with structural nano-synthetic and steel fibers. Compos. Struct. 2014, 118, 571–579. [Google Scholar] [CrossRef]
- Eik, M.; Puttonen, J.; Herrmann, H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos. Struct. 2015, 121, 324–336. [Google Scholar] [CrossRef]
- Romualdi, J.P.; Ramey, M.; Sanday, S.C. Prevention and control of cracking by use of short random fibers. ACI Spec. Publ. 1968, 20, 179–204. [Google Scholar] [CrossRef]
- Swamy, R.N. Fibre reinforcement of cement and concrete. Mater. Constr. 1975, 8, 235–254. [Google Scholar] [CrossRef]
- Dong, Z.B.; Hu, G.Y.; Qian, G.Q.; Lu, J.F.; Zhang, Z.C.; Luo, W.Y.; Yu, P.L. High-altitude aeolian research on the Tibetan Plateau. Rev. Geophys. 2017, 55, 864–901. [Google Scholar] [CrossRef]
- Yang, H.J.; Xia, D.S.; Gao, F.Y.; Wang, S.Y.; Chen, Z.X.; Jia, J.; Sheng, S.L.; Ling, Z.Y. Research status and development prospect of desert sand concrete. Concrete 2023, 35, 158–161. [Google Scholar] [CrossRef]
- Krinsley, D.; Donahue, J. Methods to study surface textures of sand grains a discussion. Sedimentology 1968, 10, 217–221. [Google Scholar] [CrossRef]
- Al-Harthy, A.S.; Halim, M.A.; Taha, R.; Al-Jabri, K.S. The properties of concrete made with fine dune sand. Constr. Build. Mater. 2007, 21, 1803–1808. [Google Scholar] [CrossRef]
- Padmakumar, G.P.; Srinivas, K.; Uday, K.V.; Iyer, K.R.; Pathak, P.; Keshava, S.M.; Singh, D.N. Characterization of aeolian sands from Indian desert. Eng. Geol. 2012, 139, 38–49. [Google Scholar] [CrossRef]
- Yan, W.L.; Guang, W.; Dong, Z.Q. Optimization of the mix proportion for desert sand concrete based on a statistical model. Constr. Build. Mater. 2019, 226, 469–482. [Google Scholar] [CrossRef]
- Liu, Y.B.; Huang, Y.; Yu, R.; Sun, J.; Guo, L.L.; Liang, X.M.; Zuo, B.X. Optimization of Natural Desert Sand Concrete Mix Ratio. Bull. Chin. Ceram. Soc. 2024, 43, 4406–4416. [Google Scholar] [CrossRef]
- Luo, F.J.; Li, H.; Zhu, P.; Wen, H.D.; Xiao, L.Z.; Frank, C. Effect of very fine particles on workability and strength of concrete made with dune sand. Constr. Build. Mater. 2013, 47, 131–137. [Google Scholar] [CrossRef]
- ASTM C33; American Society for Testing and Materials (ASTM): Standard Specification for Concrete Aggregates. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- Akhtar, M.N.; Albatayneh, O.; Bani-Hani, K.A.; Malkawi, A.I.H. Performance of Modified Desert Sand Concrete: An Experimental Case Study. Case Stud. Constr. Mater. 2024, 21, e03465. [Google Scholar] [CrossRef]
- Li, Z.Q.; Yang, S.; Tang, Y.J.; Wang, W.; Li, X.H.; Jiang, H.B. Experimental study on the mechanical properties of desert sand concrete with high replacement. Concrete 2018, 12, 53–56. [Google Scholar] [CrossRef]
- Liu, H.F.; Ma, J.R.; Fu, J.; Yang, W.W. Research on the mechanical properties of desert sand concrete. Concrete 2015, 9, 80–83,86. [Google Scholar] [CrossRef]
- Dong, W.; Lu, S.; Xue, G. Effect of Aeolian Sand and Fly Ash Content on Mechanical Properties of Concrete. Bull. Chin. Ceram. Soc. 2018, 37, 2320–2325. [Google Scholar] [CrossRef]
- Cai, H.; Liao, T.; Ren, S.; Li, S.; Huo, R.; Yuan, J.; Yang, W. Predicting the Compressive Strength of Desert Sand Concrete Using ANN: PSO and Its Application in Tunnel. Adv. Civ. Eng. 2020, 8875922. [Google Scholar] [CrossRef]
- Abu Seif, E.S.S.; Sonbul, A.R.; Hakami, B.A.H.; El-Sawy, E.K. Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bull. Eng. Geol. Environ. 2016, 75, 1007–1022. [Google Scholar] [CrossRef]
- Chuah, S.; Duan, W.H.; Pan, Z.; Hunter, E.; Korayem, A.H.; Zhao, X.L.; Collins, F.; Sanjayan, J.G. The properties of fly ash based geopolymer mortars made with dune sand. Mater. Des. 2016, 92, 571–578. [Google Scholar] [CrossRef]
- Alhozaimy, A.; Jaafar, M.S.; Al-Negheimish, A.; Abdullah, A.; Taufiq-Yap, Y.H.; Noorzaei, J.; Alawad, O.A. Properties of high strength concrete using white and dune sands under normal and autoclaved curing. Constr. Build. Mater. 2012, 27, 218–222. [Google Scholar] [CrossRef]
- Dong, W.; Shen, X.D. Study on Cement Mortar Fluidity and Compressive Strength by Different Aeolian Sand Dosage. Bull. Chin. Ceram. Soc. 2013, 32, 1900–1904. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, K.; Zhang, J.; Guo, J. Experimental study on performance influencing factors and reasonable mixture ratio of desert sand ceramsite lightweight aggregate concrete. Adv. Civ. Eng. 2020, 1, 8613932. [Google Scholar] [CrossRef]
- Wei, L.S.; Shen, X.D.; Liu, Q.; Dong, R.X.; Zhang, C.H. Influencing Factors of Different Aeolian Sand Concrete Strength. Bull. Chin. Ceram. Soc. 2019, 38, 2933–2940. [Google Scholar] [CrossRef]
- Dong, R.X.; Shen, X.D.; Liu, Q.; Wei, L.S.; Zhang, C.H. Influence Mechanism of Pore Characteristics of Aeolian Sand Concrete on Its Strength. Bull. Chin. Ceram. Soc. 2018, 38, 1901–1907. [Google Scholar] [CrossRef]
- Huang, W.M. Experimental Study on Basic Mechanical Properties and Durability of the Desert Sand Concrete with Lithium Slag and Polypropylene Fiber. Master’s Thesis, Xinjiang University, Uyghur, China, 2017. [Google Scholar]
- Liu, H.; Ma, J.; Wang, Y.; Ning, J. Influence of desert sand on the mechanical properties of concrete subjected to impact loading. Acta Mech. Solida Sin. 2017, 30, 583–595. [Google Scholar] [CrossRef]
- Jin, B.H.; Song, J.X.; Liu, H.F. Engineering characteristics of concrete made of desert sand from maowusu sandy land. Appl. Mech. Mater. 2012, 174-177, 604–607. [Google Scholar] [CrossRef]
- Khattab, E. Effects of incorporating dune sand as fine aggregate replacement in self-compacting concrete. Key Eng. Mater. 2016, 668, 189–196. [Google Scholar] [CrossRef]
- Bédérina, M.; Khenfer, M.M.; Dheilly, R.M.; Quéneudec, M. Reuse of local sand: Effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes. Cem. Concr. Res. 2005, 35, 1172–1179. [Google Scholar] [CrossRef]
- Bouziani, T.; Bederina, M.; Hadjoudja, M. Effect of Dune Sand on the Properties of Flowing Sand-Concrete (FSC). Int. J. Concr. Struct. Mater. 2005, 6, 59–64. [Google Scholar] [CrossRef]
- Bouziani, T.; Benmounah, A.; Bédérina, M. Statistical modelling for effect of mix-parameters on properties of high-flowing sand-concrete. J. Cent. South Univ. 2012, 19, 2966–2975. [Google Scholar] [CrossRef]
- Dong, W.; Su, Y.; Lin, Y.J.; Shuai, L. Study on the properties of aeolian sand powder and aeolian sand powder cement mortar. Concrete 2018, 7, 82–84,90. [Google Scholar] [CrossRef]
- Bao, J.Q.; Xing, Y.M.; Liu, L. Experimental Study on Basic Mechanical Properties of Aeolian Sand Concrete. Constr. Technol. 2015, 11, 8–11. [Google Scholar] [CrossRef]
- Yang, W.W.; Chen, Y.L.; Liu, H.F.; Ma, J.R.; Han, L.; Song, J.X. Research on the mechanical properties of desert sand high strength concrete. Concrete 2014, 11, 100–102. [Google Scholar] [CrossRef]
- Li, Y.G.; Ma, X.L.; Hu, D.W.; Kang, Y.H. Influence of Aeolian Sand Content on Mechanism of Mortar and Concrete. Bull. Chin. Ceram. Soc. 2017, 36, 2128–2133. [Google Scholar] [CrossRef]
- Liu, H.F.; Wang, Y.Y.; Song, J.X. Numerical simulation of dynamic mechanical behaviors of desert sand concrete. J. Hydrol. Eng. 2016, 47, 493–500. [Google Scholar] [CrossRef]
- Du, Y.G.; Sun, S. Experimental Study on the Effect of Fly Ash on Compressive Strength and Frost Resistance of Desert Sand Concrete. J. Chongqing Univ. Sci. Technol. 2018, 20, 71–74. [Google Scholar] [CrossRef]
- Zhang, G.T.; Huang, W.M.; Guo, R. Experimental Study on Basic Mechanical Properties of the Desert Sand Concrete with Lithium Slag and Polypropylene Fiber. Sci. Technol. Eng. 2016, 16, 273–278. [Google Scholar] [CrossRef]
- Ju, G.N.; Li, Z.Q.; Wang, W.; Li, X.H.; Jiang, H.B. Experimental study on the axial compression properties of Gurbantonggut desert sand concrete. Concrete 2019, 4, 33–36. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Bani-Hani, K.A.; Malkawi, D.A.H.; Albatayneh, O. Suitability of sustainable sand for concrete manufacturing—A complete review of recycled and desert sand substitution. Results Eng. 2024, 23, 102478. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.-F. Development of sustainable high-performance desert sand concrete: Engineering and environmental impacts of compression casting. Resour. Conserv. Recycl. 2025, 212, 108002. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, Q.; Zhang, J. Mechanical properties and damage constitutive model of concrete under low-temperature action. Constr. Build. Mater. 2022, 348, 128668. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, S.; Wang, H.; Liu, G. Multi-scale study on the durability degradation mechanism of aeolian sand concrete under freeze-thaw conditions. Constr. Build. Mater. 2022, 340, 127433. [Google Scholar] [CrossRef]
- Dong, W.; Wang, J. Deterioration law and life prediction of aeolian sand concrete under sulfate freeze-thaw cycles. Constr. Build. Mater. 2024, 411, 134593. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Liu, H.; Che, J.; Liu, Y.; Yang, W.; Doh, S.I. Effect of Stress Level on the Frost Resistance and Uniaxial Compressive Properties of Desert Sand Concrete. J. Mater. Civ. Eng. 2024, 36, 04024400. [Google Scholar] [CrossRef]
- Bosco, E.R.; Claessens, J.M.A.; Suiker, A.S.J. Multi-scale prediction of chemo-mechanical properties of concrete materials through asymptotic homogenization. Cem. Concr. Res. 2020, 128, 105929. [Google Scholar] [CrossRef]
- Ren, Q.X.; Zhou, K.; Hou, C.; Tao, Z.; Han, L.H. Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments. Thin-walled Struct. 2018, 124, 291–302. [Google Scholar] [CrossRef]
- Baheti, M. Experimental Study on Axial Compression Mechanical Properties of Desert Sand Concrete Filled Steel Tubular Short Columns. Master’s Thesis, Xinjiang University, Uyghur, China, 2019. [Google Scholar]
- Abudurexiti, Y. Experimental Study on Flexural Behavior of Desert Sand Concrete Beams. Master’s Thesis, Xinjiang University, Uyghur, China, 2015. [Google Scholar]
- Li, Z.; Yang, S.; Luo, Y. Experimental evaluation of the effort of dune sand replacement levels on flexural behaviour of reinforced beam. J. Asian Archit. Build. Eng. 2020, 19, 480–489. [Google Scholar] [CrossRef]
- Niu, A.H.; Wang, Y.S.; Wang, R.; Liao, H.; Wang, D. Experimental study on seismic behavior of autoclaved aerated concrete block wall in desert sand. Chin. J. Appl. Mech. 2020, 37, 1629–1634. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, Z.X.; Zeng, X.Y.; Li, J.; Li, Z.Q. FEM analysis on seismic performance of the desert sand concrete frame beam-column side joints. Concrete 2021, 11, 44–48. [Google Scholar] [CrossRef]
- Hamada, H.M.; Abed, F.; Al-Sadoon, Z.A.; Elnassar, Z.; Nassrullah, G. Effect of Basalt and Steel Fibers on the Microstructure and Strength of Concrete with Desert Sand. Arabian J. Sci. Eng. 2024, 49, 14183–14204. [Google Scholar] [CrossRef]
- Tan, Y.; Long, J.; Xiong, W.; Chen, X.; Zhao, B. Effects of polypropylene fibers on the frost resistance of natural sand concrete and machine-made sand concrete. Polymers 2022, 14, 4054. [Google Scholar] [CrossRef]
- Lina, Z.; Funa, J.; Xuezhi, L.; Wengui, P.; Cailong, M. Experimental Study on Mix Proportion of Polyvinyl Alcohol Fiber Reinforced Desert Sand Concrete. Bull. Chin. Ceram. Soc. 2024, 43, 10. [Google Scholar] [CrossRef]
- Hou, L.; Wen, B.; Huang, W.; Zhang, X.; Zhang, X. Mechanical Properties and Microstructure of Polypropylene–Glass-Fiber-Reinforced Desert Sand Concrete. Polymers. 2023, 15, 4675. [Google Scholar] [CrossRef]
- Feng, N.; Zhang, L.Z.; Wang, J.L. Experimental Study on Improving the Shrinkage Crack of Desert Sand Concrete with Carbon Fiber. China Concr. Cem. Prod. 2017, 11, 54–57. [Google Scholar] [CrossRef]
- Porter, H.F. The preparation of concrete-from selection of materials to final deposition. J. Proc. 1910, 6, 287–303. [Google Scholar] [CrossRef]
- Qu, C.; Qin, Y.; Luo, L.; Zhang, L. Mechanical properties and acoustic emission analysis of desert sand concrete reinforced with steel fiber. Sci. Rep. 2022, 12, 20488. [Google Scholar] [CrossRef] [PubMed]
- Abdollahnejad, Z.; Mastali, M.; Falah, M.; Shaad, K.M.; Luukkonen, T.; Illikainen, M. Durability of the reinforced one-part alkali-activated slag mortars with different fibers. Waste Biomass Valorization 2021, 12, 487–501. [Google Scholar] [CrossRef]
- Lv, S.; Bekey, S.; Yerbolat, A.; Qin, S. Influences of air entraining agent and desert sand replacement rates on mechanical properties of concrete. Nat. Commun. 2022, 9, 58–61. [Google Scholar] [CrossRef]
- Kachouh, N.; El-Hassan, H.; El-Maaddawy, T. Effect of steel fibers on the performance of concrete made with recycled concrete aggregates and dune sand. Constr. Build. Mater. 2019, 213, 348–359. [Google Scholar] [CrossRef]
- El-Hassan, H.; Medljy, J.; El-Maaddawy, T. Properties of Steel Fiber-Reinforced Alkali-Activated Slag Concrete Made with Recycled Concrete Aggregates and Dune Sand. Sustainability 2021, 13, 8017. [Google Scholar] [CrossRef]
- Qin, Y.J.; Zhang, L.L.; Qu, C.W.; Luo, L. Flexural mechanical properties of steel fiber desert sand concrete beams. Acta Mater. Compositae Sin. 2021, 39, 5599–5610. [Google Scholar] [CrossRef]
- Chen, M.; Shen, S.L.; Arulrajah, A.; Wu, H.N.; Hou, D.W.; Xu, Y.S. Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotext. Geomembr. 2015, 43, 515–523. [Google Scholar] [CrossRef]
- Wongtanakitcharoen, T.; Naaman, A.E. Unrestrained early age shrinkage of concrete with polypropylene, PVA, and carbon fibers. Mater. Struct. 2007, 40, 289–300. [Google Scholar] [CrossRef]
- Meng, H.R.; Wu, D.Q.; Jin, W.; He, S.C. Study on Effect of Polypropylene Fiber on Properties of Desert Sand Self-Compacting Concrete. Plast. Sci. Technol. 2024, 52, 72–74. [Google Scholar] [CrossRef]
- Yuan, Z.; Jia, Y. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2021, 266, 121048. [Google Scholar] [CrossRef]
- Fu, Q.; Niu, D.; Li, D.; Wang, Y.; Zhang, J.; Huang, D. Impact characterization and modelling of basalt-polypropylene fibre-reinforced concrete containing mineral admixtures. Cem. Concr. Compos. 2018, 93, 246–259. [Google Scholar] [CrossRef]
- Ruan, B.; Zhou, T.; Yuan, Z.; Singh, J.; Teng, J.; Zheng, S.; Zhang, J. Effects of Curing Conditions on Splitting Tensile Behavior and Microstructure of Cemented Aeolian Sand Reinforced with Polypropylene Fiber. Materials 2023, 16, 6347. [Google Scholar] [CrossRef]
- Balouch, S.U.; Forth, J.P.; Granju, J.L. Surface corrosion of steel fibre reinforced concrete. Cem. Concr. Res. 2010, 40, 410–414. [Google Scholar] [CrossRef]
- Shoaib, S.; El-Maaddawy, T.; El-Hassan, H.; El-Ariss, B.; Alsalami, M. Fresh and hardened properties of concrete reinforced with basalt macro-fibers. Buildings 2022, 12, 1136. [Google Scholar] [CrossRef]
- Jiang, Z. Research of Basalt Fiber Desert Sand Concreter on the Mechanical Properties and Frost Resistance and Permeability Resistance. Master’s Thesis, Ningxia University, Yinchuan, China, 2014. [Google Scholar]
- Gencel, O.; Bilir, T.; Bademler, Z.; Ozbakkaloglu, T. A detailed review on foam concrete composites: Ingredients, properties, and microstructure. Appl. Sci. 2022, 12, 5752. [Google Scholar] [CrossRef]
- Iyer, P.; Kenno, S.Y.; Das, S. Mechanical properties of fiber-reinforced concrete made with basalt filament fibers. J. Mater. Civ. Eng. 2015, 27, 04015015. [Google Scholar] [CrossRef]
- Elshafie, S.; Whittleston, G.S. A review of the effect of basalt fibre lengths and proportions on the mechanical properties of concrete. Int. J. Res. Eng. Technol. 2015, 4, 458–465. [Google Scholar] [CrossRef]
- Banthia, N.; Majdzadeh, F.; Wu, J.; Bindiganavile, V. Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cem. Concr. Compos. 2014, 48, 91–97. [Google Scholar] [CrossRef]
- Feng, J.J.; Yin, G.S.; Yuo, H.L.; Wen, C.G.; Liu, Z.; Liang, J.H.; Zhang, Y.J. Uniaxial compressive behavior of hook-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete. Constr. Build. Mater. 2021, 304, 124559. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Deng, D.; Wang, K.; Duan, W.H. Reinforcement effects of polyvinyl alcohol and polypropylene fibers on flexural behaviors of sulfoaluminate cement matrices. Cem. Concr. Compos. 2018, 88, 139–149. [Google Scholar] [CrossRef]
- Banthia, N.; Sappakittipakorn, M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cem. Concr. Res. 2007, 37, 1366–1372. [Google Scholar] [CrossRef]
- Afroz, M.; Venkatesan, S.; Patnaikuni, I. Effects of hybrid fibers on the development of high volume fly ash cement composite. Constr. Build. Mater. 2019, 215, 984–997. [Google Scholar] [CrossRef]
- Zhang, J.; Baikaiyi, S.; Li, X.M.; Li, J. Effect of hybrid fibers on mechanical properties of concrete mixed with desert sand. Concrete 2023, 8, 87–91. [Google Scholar] [CrossRef]
- Che, J.; Guo, Z.; Li, Q.; Liu, H. Mechanical properties of desert-sand-based steel-PVA hybrid fiber reinforced engineered cementitious composites (H-DSECC). KSCE J. Civ. Eng. 2022, 26, 5160–5172. [Google Scholar] [CrossRef]
- Jian, S.L.; Hou, L.N.; Huang, W.; Wang, Y.Z. Research status and prospect of fiber concrete frost resistance. Appl. Chem. Ind. 2020, 52, 3153–3157. [Google Scholar] [CrossRef]
- Hou, L.; Jian, S.; Huang, W. The Effect of Polypropylene Fiber and Glass Fiber on the Frost Resistance of Desert Sand Concrete. KSCE J. Civ. Eng. 2024, 28, 342–353. [Google Scholar] [CrossRef]
- Ma, Y.A.; Li, Z.X.; Tang, Y.J.; Xia, D.T. Effect of mixed fibers on the basic mechanical properties of full desert sand concrete. J. Shihezi Univ. Nat. Sci. 2024, 42, 174–183. [Google Scholar] [CrossRef]
- Li, Z.Q.; Wang, G.Q.; Yang, S.; Ju, G.N. Experimental study on mechanical properties and stress-strain constitutive relations of desert sand concrete. Chin. J. Appl. Mech. 2019, 36, 1131–1137. [Google Scholar] [CrossRef]
- Ding, Y.Z.; He, M.S.; Qiu, J.; Yuan, K. Mechanical properties and constitutive model of rubber desert sand concrete. J. Shihezi Univ. Nat. Sci. 2023, 41, 199–206. [Google Scholar] [CrossRef]
- Lyu, S.H.; Bekey, S.; Xu, J.H. Study on Mechanical Properties of Air Entraining Fiber Reinforced Concrete with Desert Sand. China Concr. Cem. Prod. 2022, 9, 58–61. [Google Scholar] [CrossRef]
- Dawood, A.O.; Jaber, A.M. Effect of dune sand as sand replacement on the mechanical properties of the hybrid fiber reinforced concrete. Civ. Environ. Eng. 2022, 18, 111–136. [Google Scholar] [CrossRef]
- Hamada, H.M.; Abed, F.; Al-Sadoon, Z.A.; Elnassar, Z.; Hassan, A. The use of treated desert sand in sustainable concrete: A mechanical and microstructure study. J. Build. Eng. 2023, 79, 107843. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, R.; Sun, J.; Liu, Y.; Luo, S.; Li, S. Optimization of All-Desert Sand Concrete Aggregate Based on Dinger–Funk Equation. Buildings 2024, 14, 2332. [Google Scholar] [CrossRef]
- Cai, X.; He, Z.; Tang, S.; Chen, X. Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test. Constr. Build. Mater. 2016, 127, 804–814. [Google Scholar] [CrossRef]
- Cao, A.; Ma, Y.; Li, Z.; Du, X.; Li, G.; Wang, A. Study of the Influence of Desert Sand-Mineral Admixture on the Abrasion Resistance of Concrete. Materials 2025, 18, 446. [Google Scholar] [CrossRef]
- Weise, K.; Endell, L.M.; Ukrainczyk, N.; Koenders, E. Pozzolanic metakaolin reactivity: Time-dependent influence of calcium hydroxide, alkali hydroxides, and sulfates. Constr. Build. Mater. 2024, 431, 136534. [Google Scholar] [CrossRef]
- Jiang, T.; Jin, Y. Phase Analysis of Alkali-Activated Slag Hybridized with Low-Calcium and High-Calcium Fly Ash. Sustainability 2022, 14, 3767. [Google Scholar] [CrossRef]
- Murali, G.; Nassar, A.K.; Swaminathan, M.; Kathirvel, P.; Wong, L.S. Effect of silica fume and glass powder for enhanced impact resistance in GGBFS-based ultra high-performance geopolymer fibrous concrete: An experimental and statistical analysis. Def. Technol. 2024, 41, 59–81. [Google Scholar] [CrossRef]
- Zhang, M.H.; Zhu, X.Z.; Shi, J.Y.; Liu, B.J.; He, Z.H.; Liang, C.F. Utilization of desert sand in the production of sustainable cement-based materials: A critical review. Constr. Build. Mater. 2022, 327, 127014. [Google Scholar] [CrossRef]
- Zheng, H.Y. The Analysis of Glass Fiber Reinforced Concrete Performance and Its Application in Engineering. Constr. Des. Eng. 2015, 5, 137–139. [Google Scholar] [CrossRef]
Source of Sand | Mass Fraction/% | Author | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | TiO2 | Other | ||
River sand | 97.53 | 2.84 | 0.00 | 0.19 | 0.76 | 0.00 | 0.00 | — | — | S. Zhang [50] |
Machine-made | 73.59 | 7.59 | 3.07 | 4.83 | 1.33 | 1.02 | 1.75 | — | 6.82 | S. Zhang [50] |
Kubuqi | 74.00 | 10.00 | 3.00 | 3.00 | 2.00 | 1.00 | 2.00 | 0.30 | 4.70 | L. Wei [51] |
Uulan Buh | 69.00 | 10.00 | 5.00 | 3.00 | 3.00 | 2.00 | 3.00 | 0.20 | 4.80 | R. Dong [52] |
Tokxun | 70.33 | 10.85 | 5.65 | — | 2.39 | 1.03 | 2.48 | — | 7.27 | W. Huang [53] |
Mu Us | 82.66 | 8.72 | 2.00 | — | 0.12 | 1.51 | 0.07 | — | 4.92 | H. Liu [54] |
Tengri | 82.92 | 8.02 | 0.22 | — | 0.06 | 1.39 | 0.03 | — | 7.36 | A. Al-Harthy [35] |
Gurbantunggut | 63.62 | 9.63 | 8.19 | 2.15 | 2.08 | 2.14 | 2.83 | 0.22 | 9.00 | G. Padmakumar [36] |
Ausrtalia | 94.8 | 2.00 | 0.23 | 0.66 | 0.34 | 0.11 | 0.06 | — | 1.8 | F. Luo [39] |
Takla Makan | 55.61 | 9.56 | 14.38 | 2.44 | 2.32 | 2.54 | 2.08 | 0.36 | 10.41 | W. Yan [37] |
Fiber Type | Diameter | Density | Elastic Modulus | Elongation at | Tensile Strength | Author |
---|---|---|---|---|---|---|
(m) | (g/) | (GPa) | Break (%) | (MPa) | ||
Steel Fiber (SF) | 750 | 7.86 | 201 | 2.7 | 2850 | H. Hamada [81] |
Basalt Fiber (BF) | 12 | 2.75 | 80–110 | 3.5 | 3000–4000 | H. Hamada [81] |
Polypropylene | 31.86 | 0.91 | >4.5 | 255± | 567 | Y. Tan [82] |
Fiber (PPF) | ||||||
Polyvinyl Alcohol | 15.3 | 1.3 | 40 | 7 | 1830 | Z. Lina [83] |
Fiber (PVAF) | ||||||
Glass Fiber (GF) | – | 2.4 | 70 | – | 2500 | L. Hou [84] |
Carbon Fiber (CF) | 7 | – | 240 | 1.5 | 4900 | N. Feng [85] |
Fiber Species and Volume Admixture | Desert Sand Substitution Rate (%) | Compressive Strength /MPa | Flexural Strength /MPa | Splitting Tensile Strength /MPa | Axial Compressive Strain / | Author |
---|---|---|---|---|---|---|
PPF 0.5%, | 100 | 0.77 | 9.59 | - | 6.27 | Y. Ma [114] |
PVAF 1% | ||||||
PPF 0.1%, | 30 | 45.7 | 4.10 | 4.38 | - | S. Jian [112] |
GF 0.05% | ||||||
PP 0.025%, | 40 | 35.4 | - | 3.94 | - | S. Sreebha [9] |
BF 0.075% | ||||||
BF 0.1% | 100 | 39.5 | 3.3 | 3.59 | - | S. Lyu [117] |
No added fiber | 100 | 35.59 | - | 2.21 | 4.35 | Z. Li [115] |
No added fiber | 60 | 33.5 | - | 1.57 | 2.24 | Y. Ding [116] |
Desert Sand Replacement Rate (%) | Ca (wt.%) | Si (wt.%) | Fe (wt.%) | Al (wt.%) | Mg (wt.%) | O (wt.%) |
---|---|---|---|---|---|---|
0 | 30.7 | 14.4 | 4.1 | 2.9 | 6.5 | 41.4 |
25 | 35.4 | 11.7 | 3.7 | 2.4 | 3.6 | 43.2 |
50 | 32.4 | 13.4 | 2.7 | 3.0 | 2.8 | 45.9 |
75 | 34.9 | 14.8 | 3.0 | 2.6 | 1.9 | 42.9 |
100 | 30.8 | 16.1 | 3.3 | 3.9 | 1.7 | 44.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, B.; Xin, J.; Yu, W. Research Status of Mechanical Properties and Microstructure of Fiber-Reinforced Desert Sand Concrete. Materials 2025, 18, 2531. https://doi.org/10.3390/ma18112531
Nan B, Xin J, Yu W. Research Status of Mechanical Properties and Microstructure of Fiber-Reinforced Desert Sand Concrete. Materials. 2025; 18(11):2531. https://doi.org/10.3390/ma18112531
Chicago/Turabian StyleNan, Bo, Jiantong Xin, and Wei Yu. 2025. "Research Status of Mechanical Properties and Microstructure of Fiber-Reinforced Desert Sand Concrete" Materials 18, no. 11: 2531. https://doi.org/10.3390/ma18112531
APA StyleNan, B., Xin, J., & Yu, W. (2025). Research Status of Mechanical Properties and Microstructure of Fiber-Reinforced Desert Sand Concrete. Materials, 18(11), 2531. https://doi.org/10.3390/ma18112531