Recent Developments in Plastic Deformation Behavior of Titanium and Its Alloys During the Rolling Process: A Review
Abstract
:1. Introduction
2. Fundamentals of Ti Rolling
2.1. Plastic Deformation by Rolling
2.2. Texture Analysis
2.3. Mechanisms of Mechanical Property Improvement
3. Various Rolling Methods for Ti and Its Alloys
3.1. Classification of Rolling Processes by Temperature
3.1.1. Cold-Rolling Process
3.1.2. Hot-Rolling Process
3.1.3. Cryogenic Rolling Process
3.2. Classification of Rolling Processes by Direction
4. Applications and Industrial Implications
4.1. High-Strength and Lightweight Structural Material
4.2. Ti Sputtering Targets for Quality Thin Films
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siddiqui, A.H.; Tiwari, P.; Patil, J.P.; Tewari, A.; Mishra, S. Yield locus and texture evolution of AA7475-T761 aluminum alloy under planar biaxial loading: An experimental and analytical study. J. Alloys Compd. 2024, 1000, 175115. [Google Scholar] [CrossRef]
- Song, C.R.; Zhang, S.Y.; Liu, L.; Yang, H.Y.; Kang, J.; Meng, J.; Luo, C.J.; Wang, C.G.; Cao, K.; Qiao, J.; et al. Research progress on the microstructure evolution mechanisms of al-Mg alloys by severe plastic deformation. Materials 2024, 17, 4235. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Chen, J.; Zhan, L.; Chi, T.; Wang, B.; Zhong, S. Simulation analysis for deformation and performance evolution of aerospace composite tank during curing process. In Proceedings of the SIUSAI ’24: 2024 3rd International Symposium on Intelligent Unmanned Systems and Artificial Intelligence, Qingdao, China, 17–19 May 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 210–215. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, J.; Mo, X.; Chen, W.; Fu, D.; Zhang, H.; Teng, J.; Jiang, F. Microstructure, mechanical properties, and strengthening mechanisms of ultra-high strength al-Zn-Mg-Cu alloy prepared by continuous extrusion forming process. Mater. Des. 2024, 242, 112985. [Google Scholar] [CrossRef]
- Yang, H.; Li, H.; Sun, H.; Wang, H.; Fu, M.W. Study of the mechanism of the strength-ductility synergy of α-Ti at cryogenic temperature via experiment and atomistic simulation. Int. J. Plast. 2024, 177, 103971. [Google Scholar] [CrossRef]
- Tan, R.; Jin, S.; Wei, S.; Wang, J.; Zhao, X.; Wang, Z.; Liu, Q.; Sun, T. Evolution mechanism of microstructure and microhardness of Ti–6Al–4V alloy during ultrasonic elliptical vibration assisted ultra-precise cutting. J. Mater. Res. Technol. 2024, 30, 1641–1649. [Google Scholar] [CrossRef]
- Eldeeb, I.S.; Hawam, A.A.; Nabhan, A.; Egiza, M. Efficient formability in radial-shear rolling of A2024 aluminum alloy with screw rollers. Mater. Today Commun. 2024, 41, 110241. [Google Scholar] [CrossRef]
- Chen, T.; Wang, X.; Zhao, B.; Ding, W.; Xiong, M.; Xu, J.; Liu, Q.; Xu, D.; Zhao, Y.; Zhu, J. Material removal mechanisms in ultrasonic vibration-assisted high-efficiency deep grinding γ-TiAl alloy. Chin. J. Aeronaut. 2024, 37, 462–476. [Google Scholar] [CrossRef]
- Wang, H.; Luo, X.C.; Zhang, D.T.; Qiu, C.; Chen, D.L. High-strength extruded magnesium alloys: A critical review. J. Mater. Sci. Technol. 2024, 199, 27–52. [Google Scholar] [CrossRef]
- Boyer, R.R. An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 1996, 213, 103–114. [Google Scholar] [CrossRef]
- P, B.; M, A.X. Effect of B4C and Graphene on the Microstructural and Mechanical Properties of Al6061 Matrix Composites. J. Mater. Res. Technol. 2024, 31, 496–505. [Google Scholar] [CrossRef]
- Sarmah, P.; Gupta, K. Recent advancements in fabrication of metal matrix composites: A systematic review. Materials 2024, 17, 4635. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Williams, J.C. Perspectives on titanium science and technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Li, P.; Yan, Z.; Yang, Y. Progress in automobile body processing technology: Multi-material and lightweight strategies for saving energy and reducing emissions. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 1–18. [Google Scholar] [CrossRef]
- Gao, Y.C.; Dong, B.X.; Yang, H.Y.; Yao, X.Y.; Shu, S.L.; Kang, J.; Meng, J.; Luo, C.J.; Wang, C.G.; Cao, K.; et al. Research progress, application and development of high Performance 6000 series aluminum alloys for new energy vehicles. J. Mater. Res. Technol. 2024, 32, 1868–1900. [Google Scholar] [CrossRef]
- Bakhbergen, U.; Abbassi, F.; Kalimuldina, G.; Montazami, R.; Shehab, E.; Araby, S. Recent approaches of interface strengthening in fibre metal laminates: Processes, measurements, properties and numerical analysis. Compos. B Eng. 2024, 285, 111744. [Google Scholar] [CrossRef]
- He, D.; Keith, D.R.; Kim, H.C.; De Kleine, R.; Anderson, J.; Doolan, M. Materials challenges in the electric vehicle transition. Environ. Sci. Technol. 2024, 58, 12297–12303. [Google Scholar] [CrossRef]
- Rolseth, A.; Carlson, M.; Ghassemali, E.; Pérez Caro, L.; Jarfors, A.E.W. Impact of functional integration and electrification on aluminium scrap in the automotive sector: A review. Resour. Conserv. Recycl. 2024, 205, 107532. [Google Scholar] [CrossRef]
- Bhatti, T.M.; Wang, Y.; Jamal, S.; Baig, M.M.A.B.; Shehzadi, F. Microstructure evolution and mechanical response of hetero-induced SiCp addition in Al-6061 under high strain rate compressive loading. J. Mater. Res. Technol. 2024, 33, 1999–2013. [Google Scholar] [CrossRef]
- Sundaramoorthy, S.; Gopalan, R.; Thulasiram, R. Microstructural characterization, tribological and corrosion behavior of AA7075-TiC composites. China Foundry 2024, 21, 334–342. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced lightweight materials for automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Silviana, S.; Candra, L.; Dalanta, F. Optimization, characterization, corrosion, and antibacterial assessments of silica-modified Hexamethyldisilazane and zinc oxide coatings on aluminum. Mater. Chem. Phys. 2024, 315, 129044. [Google Scholar] [CrossRef]
- Kumar, A.S.; Sharma, S.K.; Shukla, A.K. Microstructural, mechanical, and thermal analysis of SS316L weldment for marine engineering application. J. Mater. Eng. Perform. 2023, 33, 13502–13515. [Google Scholar] [CrossRef]
- Kowalski, J.; Kozak, J. Influence of material thickness on the ductile fracture of steel plates for shipbuilding. Pol. Marit. Res. 2022, 29, 160–166. [Google Scholar] [CrossRef]
- Ni, R.; Hou, W.; Shen, Y.; Liu, W.; Cao, F.; Sun, T. Friction forge riveting: A new joining method for connecting 40Cr steel and TC4 titanium alloy. J. Manuf. Process 2021, 68, 79–89. [Google Scholar] [CrossRef]
- Chen, K.; Liu, W.; Wang, T.; Wang, N.; Chen, Z. Experimental research on the technology of two-pass different temperature rolling for thick steel/aluminum/aluminum-alloy composite plate. Int. J. Adv. Manuf. Technol. 2022, 120, 7689–7705. [Google Scholar] [CrossRef]
- Bolf, D.; Zamarin, A.; Krolo, P.; Hadjina, M. Experimental evaluation of shear properties of lightweight PVC core for marine application using digital image correlation system. J. Mar. Sci. Eng. 2022, 10, 280. [Google Scholar] [CrossRef]
- Sirisatien, T.; Mahabunphachai, S.; Sojiphan, K. Effect of submerged arc welding process with one-side one-pass welding technique on distortion behavior of shipbuilding steel plate ASTM A131 Grade A. Mater. Today Proc. 2018, 5, 9543–9551. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; El-Sayed Seleman, M.M.; Touileb, K.; Albaijan, I.; Habba, M.I.A. Microstructure, crystallographic texture, and mechanical properties of friction stir welded mild steel for shipbuilding applications. Materials 2022, 15, 2905. [Google Scholar] [CrossRef]
- Al-Zain, Y.; Kim, H.Y.; Hosoda, H.; Nam, T.H.; Miyazaki, S. Shape memory properties of Ti-Nb-Mo biomedical alloys. Acta Mater. 2010, 58, 4212–4223. [Google Scholar] [CrossRef]
- Hao, Y.L.; Li, S.J.; Sun, S.Y.; Zheng, C.Y.; Yang, R. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomater. 2007, 3, 277–286. [Google Scholar] [CrossRef]
- Ehtemam-Haghighi, S.; Prashanth, K.G.; Attar, H.; Chaubey, A.K.; Cao, G.H.; Zhang, L.C. Evaluation of mechanical and wear properties of Ti[Sbnd]XNb[Sbnd]7Fe alloys designed for biomedical applications. Mater. Des. 2016, 111, 592–599. [Google Scholar] [CrossRef]
- Rack, H.J.; Qazi, J.I. Titanium alloys for biomedical applications. Mater. Sci. Eng. C 2006, 26, 1269–1277. [Google Scholar] [CrossRef]
- Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 2002, 33, 477–486. [Google Scholar] [CrossRef]
- Zhang, L.C.; Chen, L.Y. A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New developments of Ti-based alloys for biomedical applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef]
- Khorasani, A.M.; Goldberg, M.; Doeven, E.H.; Littlefair, G. Titanium in biomedical applications—Properties and fabrication: A review. J. Biomater. Tissue Eng. 2015, 5, 593–619. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Oliveira, N.T.C.; Guastaldi, A.C. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater. 2009, 5, 399–405. [Google Scholar] [CrossRef]
- Balazic, M.; Kopac, J.; Jackson, M.J.; Ahmed, W. Review: Titanium and titanium alloy applications in medicine. IJNBM 2007, 1, 3–34. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef]
- Halevy, I.; Zamir, G.; Winterrose, M.; Sanjit, G.; Grandini, C.R.; Moreno-Gobbi, A. Crystallographic structure of Ti-6Al-4V, Ti-HP and Ti-CP under high-pressure. J. Phys. Conf. Ser. 2010, 215, 012013. [Google Scholar] [CrossRef]
- Birch, R.; Britton, T.B. Effective structural unit analysis in hexagonal close-packed alloys–Reconstruction of parent β microstructures and crystal orientation post-processing analysis. J. Appl. Crystallogr. 2022, 55, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Cass, T.R.; Quinn, R.W.; Spencer, W.R. Growth of hexagonal titanium and titanium-aluminum single crystals. J. Cryst. Growth 1968, 2, 413–416. [Google Scholar] [CrossRef]
- Cao, S.; Zou, Y.; Lim, C.V.S.; Wu, X. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: Process, post-process treatment, microstructure, and property. Light Adv. Manuf. 2021, 2, 20. [Google Scholar] [CrossRef]
- Sabeena, M.; Murugesan, S.; Anees, P.; Mohandas, E.; Vijayalakshmi, M. Crystal structure and bonding characteristics of transformation products of bcc β in Ti-Mo alloys. J. Alloys Compd. 2017, 705, 769–781. [Google Scholar] [CrossRef]
- Marczewski, M.; Miklaszewski, A.; Maeder, X.; Jurczyk, M. Crystal Structure Evolution, Microstructure Formation, and Properties of Mechanically Alloyed Ultrafine-Grained Ti-Zr-Nb Alloys at 36 ≤ Ti ≤ 70 (at. %). Materials 2020, 13, 587. [Google Scholar] [CrossRef]
- Masuda-Jindo, K.; Nishitani, S.R.; Van Hung, V.H. Hcp-Bcc structural phase transformation of titanium: Analytic model calculations. Phys. Rev. B 2004, 70, 184122. [Google Scholar] [CrossRef]
- Thool, K.; Yazar, K.U.; Kavimani, V.; Gupta, A.; Choi, S.H. Microstructural and textural evolution in hexagonal close-packed metals: The case of zirconium, magnesium, and titanium. Crystals 2024, 14, 727. [Google Scholar] [CrossRef]
- Lu, Y.H.; Zhou, D.; Wang, T.; Yang, S.A.; Jiang, J.Z. Topological properties of atomic lead film with honeycomb structure. Sci. Rep. 2016, 6, 21723. [Google Scholar] [CrossRef]
- Peters, M.; Hemptenmacher, H.; Kumpfert, J.; Leyens, C. Titanium and Titanium Alloys, 1st ed.; Wiley-VCH: Weinheim, Germany, 2003; pp. 1–57. [Google Scholar]
- Jackson, M.J.; Kopac, J.; Balazic, M.; Bombac, D.; Brojan, M.; Kosel, F. Titanium and Titanium Alloy Applications in Medicine. In Surgical Tools and Medical Devices, 1st ed.; Ahmed, W., Jackson, M.J., Eds.; Wiley: New York, NY, USA, 2016; pp. 475–517. [Google Scholar]
- Wang, Y.; Liao, X.; Zhu, Y. Grain refinement and growth induced by severe plastic deformation. Int. J. Mater. Res. 2009, 100, 1632–1637. [Google Scholar] [CrossRef]
- Preston, D.L.; Tonks, D.L.; Wallace, D.C. Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 2003, 93, 211–220. [Google Scholar] [CrossRef]
- Guan, X.; Liu, D.; Qu, S.; Cao, G.; Wang, H.; Feng, A.; Chen, D. Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation. Materials 2024, 17, 3645. [Google Scholar] [CrossRef] [PubMed]
- Ozan, S.; Lin, J.; Zhang, Y.; Li, Y.; Wen, C. Cold rolling deformation and annealing behavior of a β-type Ti–34Nb–25Zr titanium alloy for biomedical applications. J. Mater. Res. Technol. 2020, 9, 2308. [Google Scholar] [CrossRef]
- Jia, Z.; Zhao, Q.; Zhang, Y.; Xu, Y.; Chen, Y.; Deng, X.; Zhang, F.; Wang, L.; Guo, D. Hot and cold rolling of a novel near-α titanium alloy: Mechanical properties and underlying deformation mechanism. Mater. Sci. Eng. A 2023, 863, 144543. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, Q.; Zhou, G.; Wang, D. Influence of hot-rolling on the microstructure and mechanical properties of a near β-type Ti-5.2Mo-4.8Al-2.5Zr-1.7Cr alloy. Prog. Nat. Sci. Mater. Int. 2022, 32, 504. [Google Scholar] [CrossRef]
- Jiao, Z.J.; He, C.Y.; Li, J.P.; Liu, X.H. Study of rolling force calculation models for cold rolling process. Adv. Mater. Res. 2011, 154–155, 882–885. [Google Scholar] [CrossRef]
- Bu, H.; Ji, X.; Yan, Z. Research on online mathematical models of tandem cold rolling. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012169. [Google Scholar] [CrossRef]
- Jiao, Z.J.; Zhang, H.; Wang, J.; Liu, C.H.; Liu, X. Precise rolling force calculation for the tandem cold mill. Mater. Sci. Forum 2007, 561–565, 1883–1886. [Google Scholar] [CrossRef]
- Hwang, R.; Jo, H.; Kim, K.S.; Hwang, H.J. Hybrid model of mathematical and neural network formulations for rolling force and temperature prediction in hot rolling processes. IEEE Access 2020, 8, 153123–153133. [Google Scholar] [CrossRef]
- Wang, J.S.; Jiang, Z.Y.; Tieu, A.K.; Liu, X.H.; Wang, G.D. Adaptive calculation of deformation resistance model of online process control in tandem cold mill. J. Mater. Process. Technol. 2005, 162–163, 585–590. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sabat, R.K.; Sahni, S.; Suwas, S. Texture and microstructure evolution of commercially pure titanium during hot rolling: Role of strain-paths. Mater. Des. 2016, 91, 58–71. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sabat, R.K.; Bishoyi, B.D.; Anjani, A.G.S.; Suwas, S. Effect of strain-paths on mechanical properties of hot rolled commercially pure titanium. Mater. Lett. 2016, 180, 166–169. [Google Scholar] [CrossRef]
- Ghosh, A.; Singh, A.; Gurao, N.P. Effect of rolling mode and annealing temperature on microstructure and texture of commercially pure-titanium. Mater. Charact. 2017, 125, 83–93. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, X. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel. J. Mater. Sci. Technol. 2022, 96, 126–139. [Google Scholar] [CrossRef]
- Jia, W.P.; Hu, X.D.; Zhao, H.Y.; Ju, D.Y.; Chen, D.L. Texture evolution of AZ31 magnesium alloy sheets during warm rolling. J. Alloys Compd. 2015, 645, 70–77. [Google Scholar] [CrossRef]
- Choi, C.S.; Prask, H.J.; Orosz, J. Textures of tantalum metal sheets by neutron diffraction. J. Mater. Sci. 1993, 28, 3283–3290. [Google Scholar] [CrossRef]
- Amirnejad, M.; Rajabi, M.; Jamaati, R. Comparative investigation of microstructure and crystallographic texture effect on Ti6Al4V alloy mechanical properties. Mater. Chem. Phys. 2020, 256, 123725. [Google Scholar] [CrossRef]
- Li, J.; Jin, L.; Wang, F.; Liu, C.; Wang, H.; Dong, J. Microscopic and mesoscopic deformation behaviors of dual-phase Mg-Li-Gd alloys. J. Mater. Sci. Technol. 2024, 194, 1–15. [Google Scholar] [CrossRef]
- Skrotzki, W.; Eschke, A.; Jóni, B.; Ungár, T.; Tóth, L.S.; Ivanisenko, Y.; Kurmanaeva, L. New experimental insight into the mechanisms of nanoplasticity. Acta Mater. 2013, 61, 7271–7284. [Google Scholar] [CrossRef]
- Wang, Y.N.; Huang, J.C. Texture analysis in hexagonal materials. Mater. Chem. Phys. 2003, 81, 11–26. [Google Scholar] [CrossRef]
- William, D. Callister Materials Science and Engineering: An Introduction; Wiley: Hoboken, NJ, USA, 2003; pp. 3940–3944. [Google Scholar]
- Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Thirathipviwat, P.; Song, G.; Bednarcik, J.; Kühn, U.; Gemming, T.; Nielsch, K.; Han, J. Compositional complexity dependence of dislocation density and mechanical properties in high entropy alloy systems. Prog. Nat. Sci. Mater. Int. 2020, 30, 545–551. [Google Scholar] [CrossRef]
- Williams, J.C.; Baggerly, R.G.; Paton, N.E. Deformation behavior of HCP Ti-al alloy single crystals. Metall. Mater. Trans. A 2002, 33, 837–850. [Google Scholar] [CrossRef]
- Li, H.; Mason, D.E.; Bieler, T.R.; Boehlert, C.J.; Crimp, M.A. Methodology for estimating the critical resolved shear stress ratios of α-phase Ti using EBSD-based trace analysis. Acta Mater. 2013, 61, 7555–7567. [Google Scholar] [CrossRef]
- Bridier, F.; Villechaise, P.; Mendez, J. Analysis of the Different Slip Systems activated by Tension in a α/β titanium Alloy in Relation with Local Crystallographic Orientation. Acta Mater. 2005, 53, 555–567. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Ji, X.; Emura, S.; Tsuchiya, K. Microstructure-Twinning Relations in Beta-Ti Alloys. Proc. MATEC Web Conf. 2020, 321, 12021. [Google Scholar] [CrossRef]
- Bosh, N.; Müller, C.; Mozaffari-Jovein, H. Deformation twinning in Cp-Ti and its effect on fatigue cracking. Mater. Charact. 2019, 155, 109810. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; He, W.; Li, J.; Chapuis, A.; Luan, B.; Liu, Q. Microstructure and textural evolution during cold rolling and annealing of commercially pure titanium sheet. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2018, 28, 1123–1131. [Google Scholar] [CrossRef]
- Chun, Y.B.; Yu, S.H.; Semiatin, S.L.; Hwang, S.K. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium. Mater. Sci. Eng. A 2005, 398, 209–219. [Google Scholar] [CrossRef]
- Vajpai, S.K.; Sharma, B.; Ota, M.; Ameyama, K. Effect of cold rolling and heat-treatment on the microstructure and mechanical properties of β-titanium Ti-25Nb-25Zr alloy. Mater. Sci. Eng. A 2018, 736, 323–328. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Yan, Z.; Li, D.; Xin, R.; Liu, Q. Microstructure evolution and static recrystallization during hot rolling and annealing of an equiaxed-structure TC21 titanium alloy. J. Alloys Compd. 2018, 752, 14–22. [Google Scholar] [CrossRef]
- Su, Y.; Fan, H.; You, F.H.; Kong, F.; Wang, X.; Chen, Y. Improved tensile properties of a novel near-α titanium alloy via tailoring microstructure by hot-rolling. Mater. Sci. Eng. A 2020, 790, 139588. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, Q.; Liu, X.; Yu, H.; Wang, D. Microstructure evolution and mechanical properties of a hot-rolled Ti alloy. Prog. Nat. Sci. Mater. Int. 2021, 31, 105–112. [Google Scholar] [CrossRef]
- Won, J.W.; Choi, S.W.; Hong, J.K.; Suh, B.C.; Lee, J.H.; Kwak, B.J. Microstructure and strength–ductility balance of pure titanium processed by cryogenic rolling at various rolling reductions. Mater. Sci. Eng. A 2020, 798, 140328. [Google Scholar] [CrossRef]
- Choi, S.W.; Won, J.W.; Lee, S.; Kim, J.H.; Kim, W.C.; Narayana, P.L.; Kim, E.Y.; Choi, Y.S.; Kim, J.H.; Hong, J.K. A novel cryogenic rolling method for commercially pure titanium sheets featuring high strength and ductility. J. Alloys Compd. 2022, 928, 167191. [Google Scholar] [CrossRef]
- Huang, Z.W.; Yong, P.L.; Zhou, H.; Li, Y.S. Grain size effect on deformation mechanisms and mechanical properties of titanium. Mater. Sci. Eng. A 2020, 773, 138721. [Google Scholar] [CrossRef]
- Xu, T.; Wang, S.; Li, X.; Wu, M.; Wang, W.; Mitsuzaki, N.; Chen, Z. Effects of strain rate on the formation and the tensile behaviors of multimodal grain structure titanium. Mater. Sci. Eng. A 2020, 770, 138574. [Google Scholar] [CrossRef]
- Osman, R.B.; Swain, M.V. A Critical Review of Dental Implant Materials with an Emphasis on titanium versus Zirconia. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Jia, W.; Lin, Q.; Wu, J.; Chen, G. Experimental and mechanistic investigation on the plastic anisotropic deformation behavior of α-phase titanium alloy Ti-2Al-2.5Zr. J. Mater. Sci. Technol. 2025, 212, 17–34. [Google Scholar] [CrossRef]
- Seshacharyulu, T.; Medeiros, S.C.; Frazier, W.G.; Prasad, Y.V.R.K. Hot Working of Commercial Ti-6Al-4V with an equiaxed α-β microstructure: Materials Modeling Considerations. Mater. Sci. Eng. A 2000, 284, 184–194. [Google Scholar] [CrossRef]
- Lee, W.S.; Lin, C.F. Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures. Mater. Sci. Eng. A 1998, 241, 48–59. [Google Scholar] [CrossRef]
- Isaka, M. Applications of titanium for the automotive sector. Nippon Steel Tech. Rep. 2022, 128, 34–37. [Google Scholar]
- Trzepieciński, T.; Najm, S.M. Current trends in metallic materials for body panels and structural members used in the automotive industry. Materials 2024, 17, 590. [Google Scholar] [CrossRef] [PubMed]
- Buckner, C.A.; Lafrenie, R.M.; Dénommée, J.A.; Caswell, J.M.; Want, D.A.; Gan, G.G.; Leong, Y.C.; Bee, P.C.; Chin, E.; Teh, A.K.H.; et al. We are IntechOpen, the World’s leading publisher of open access books built by scientists, for scientists TOP 1%. Intech 2016, 11, 13. [Google Scholar]
- Wollmann, M.; Kiese, J.; Wagner, L. Properties and applications of titanium alloys in transport. In Ti 2011. Proceedings of the 12th World Conference Titan 2012, Beijing, China, 19–25 June 2011; Science Press Beijing: Beijing, China, 2012; Volume 2, pp. 837–844. [Google Scholar]
- Garg, R.; Gonuguntla, S.; Sk, S.; Iqbal, M.S.; Dada, A.O.; Pal, U.; Ahmadipour, M. Sputtering Thin Films: Materials, Applications, Challenges and Future Directions. Adv. Colloid Interface Sci. 2024, 330, 103203. [Google Scholar] [CrossRef]
- Long, D.; Liu, S.; Zhu, J.; Zhang, J.; Yuan, X. Texture and Microstructure Evolution of Ultra-High Purity Cu-0.1Al Alloy under Different Rolling Methods. Crystals 2021, 11, 1113. [Google Scholar] [CrossRef]
- Reza, M.; Sajuri, Z.; Yunas, J.; Syarif, J. Effect of sputtering target’s grain size on the sputtering yield, particle size and coercivity (Hc) of Ni and Ni20Al thin films. IOP Conf. Ser. Mater. Sci. Eng. 2016, 114, 012116. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Sun, H.; Wang, G. Effects of Ti target purity and microstructure on deposition rate, microstructure and properties of Ti films. Materials 2022, 15, 2661. [Google Scholar] [CrossRef]
Rolling Method | Microstructure and Texture Properties | Advantages and Disadvantages |
---|---|---|
Cold rolling |
|
|
Hot rolling |
|
|
Cryo-rolling |
|
|
UDR |
|
|
MSCR |
|
|
RR |
|
|
Grade | Chemical Composition (Max, %) | Mechanical Properties | ||||||
---|---|---|---|---|---|---|---|---|
N | C | H | O | Fe | Tensile Strength (UTS/MPa) | /MPa) | Elongation (%) | |
Grade 1 | 0.03 | 0.10 | 0.015 | 0.18 | 0.20 | 240 | 170–310 | 25 |
Grade 2 | 0.03 | 0.10 | 0.015 | 0.25 | 0.30 | 340 | 275–450 | 20 |
Grade 3 | 0.05 | 0.10 | 0.015 | 0.35 | 0.30 | 450 | 380–550 | 18 |
Grade 4 | 0.05 | 0.10 | 0.015 | 0.40 | 0.50 | 550 | 485–655 | 15 |
Grade | Chemical Composition (Max, %) | Mechanical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | C | H | Fe | O | Al | V | Pd | Tensile Strength (UTS/MPa) | YS /MPa) | Elongation (%) | |
Grade 5 | 0.05 | 0.10 | 0.015 | 0.40 | 0.20 | 6.7 | 4.5 | - | 895 | 830 | 10 |
Grade 7 | 0.03 | 0.10 | 0.015 | 0.30 | 0.30 | - | - | 0.25 | 345 | 275–450 | 20 |
Grade 9 | 0.03 | 0.10 | 0.015 | 0.25 | 0.30 | 3 | 2.5 | - | 690 | 620 | 15 |
Grade 11 | 0.03 | 0.08 | 0.015 | 0.20 | 0.30 | - | 0.25 | 240 | 170–310 | 24 |
Ti Components | Automotive Parts |
---|---|
CP-Ti (Grade 1) | The outer shell of the muffler |
CP-Ti (Grade 2) | Heat shields, exhaust systems |
CP-Ti (Grade 3) | Door beams |
CP-Ti (Grade 4) | Body panels, car bodies |
Ti-6Al-4V | Body panels, car bodies, bumpers, axle suspension, crash clamps, suspension springs |
Ti-5Al-2.5Sn | Exhaust systems |
Ti-6.8Mo-4.5Fe-1.5Al | Suspension springs |
Ti-10V-2Fe-3A | High-strength performance components |
Ti Components | Aerospace Parts |
---|---|
CP-Ti | Floors |
Ti-3Al-2.5V | Hydraulic tubing |
Ti-10V-2Fe-3Al | Landing gear |
Ti-6Al4V | Window frames |
Ti-15V-3Al-3Cr-3Sn | Springs, landing gear, plate and airframe castings |
Ti-13V-11Cr-3Al | Airframe, landing gear, springs |
Ti-6V-6Mo-5.7Fe-2.7Al | Fasteners |
Section | Principal Achievements | Challenges |
---|---|---|
Automotive |
|
|
Aerospace |
|
Principal Achievements | Challenges |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, D.; Kim, Y.; Nahm, S.; Kang, L. Recent Developments in Plastic Deformation Behavior of Titanium and Its Alloys During the Rolling Process: A Review. Materials 2024, 17, 6060. https://doi.org/10.3390/ma17246060
Ryu D, Kim Y, Nahm S, Kang L. Recent Developments in Plastic Deformation Behavior of Titanium and Its Alloys During the Rolling Process: A Review. Materials. 2024; 17(24):6060. https://doi.org/10.3390/ma17246060
Chicago/Turabian StyleRyu, Donghee, Yulhee Kim, Sahn Nahm, and Leeseung Kang. 2024. "Recent Developments in Plastic Deformation Behavior of Titanium and Its Alloys During the Rolling Process: A Review" Materials 17, no. 24: 6060. https://doi.org/10.3390/ma17246060
APA StyleRyu, D., Kim, Y., Nahm, S., & Kang, L. (2024). Recent Developments in Plastic Deformation Behavior of Titanium and Its Alloys During the Rolling Process: A Review. Materials, 17(24), 6060. https://doi.org/10.3390/ma17246060