Improving Visible Light Photocatalysis Using Optical Defects in CoOx-TiO2 Photonic Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photonic Film Fabrication
2.2. Materials Characterization
2.3. Photocatalytic Evaluation
3. Results and Discussion
3.1. Morphological, Structural, and Optical Properties
3.2. Photocatalytic Activity
3.3. Charge Separation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.I.L.; von Freymann, G.; Choi, S.Y.; Kitaev, V.; Ozin, G.A. Amplified photochemistry with slow photons. Adv. Mater. 2006, 18, 1915–1919. [Google Scholar] [CrossRef]
- Curti, M.; Schneider, J.; Bahnemann, D.W.; Mendive, C.B. Inverse opal photonic crystals as a strategy to improve photocatalysis: Underexplored questions. J. Phys. Chem. Lett. 2015, 6, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.M.; Wu, M.Q.; Wang, Y.T.; Zhang, H.; Meng, M.; Tian, Y.; Li, X.A.; Zhang, J.; Zheng, L.R.; Gong, J.L. Synergetic enhancement of light harvesting and charge separation over surface-disorder engineered TiO2 photonic crystals. Chem 2017, 2, 877–892. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, C.; Jiang, T.; Zhang, J.; Jiang, Z.; Li, X. Construction of defect-engineered three-dimensionally ordered macroporous WO3 for efficient photocatalytic water oxidation reaction. J. Mater. Chem. A 2020, 9, 3036–3043. [Google Scholar] [CrossRef]
- Feng, L.; Wang, F.; Luo, H.; Xu, Z.; Zhao, T.; Zhu, J.; Qin, Y. Thermal vacuum de-oxygen fabrication of new catalytic pigments: SiO2@TiO2−x amorphous photonic crystals for formaldehyde removal. J. Mater. Chem. B 2023, 11, 1533–1544. [Google Scholar] [CrossRef]
- Zhao, H.; Li, C.-F.; Hu, Z.-Y.; Liu, J.; Li, Y.; Hu, J.; Van Tendeloo, G.; Chen, L.-H.; Su, B.-L. Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production. J. Colloid Interface Sci. 2021, 604, 131–140. [Google Scholar] [CrossRef]
- Pylarinou, M.; Toumazatou, A.; Sakellis, E.; Xenogiannopoulou, E.; Gardelis, S.; Boukos, N.; Dimoulas, A.; Likodimos, V. Visible light trapping against charge recombination in FeOx–TiO2 photonic crystal photocatalysts. Materials 2021, 14, 7117. [Google Scholar] [CrossRef]
- Madanu, T.L.; Mouchet, S.R.; Deparis, O.; Liu, J.; Li, Y.; Su, B.-L. Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis. J. Colloid Interface Sci. 2022, 634, 290–299. [Google Scholar] [CrossRef]
- Loukopoulos, S.; Sakellis, E.; Kostakis, M.G.; Gerokonstantis, D.-T.; Tsipas, P.; Gardelis, S.; Kontos, A.G.; Katsaros, F.K.; Sideratou, Z.; Romanos, G.E.; et al. Co-assembled MoS2–TiO2 inverse opal photocatalysts for visible light-activated pharmaceutical photodegradation. ACS Omega 2023, 8, 33639–33650. [Google Scholar] [CrossRef]
- Hedrich, C.; James, N.T.; Maragno, L.G.; De Lima, V.; González, S.Y.G.; Blick, R.H.; Zierold, R.; Furlan, K.P. Enhanced photocatalytic properties and photoinduced crystallization of TiO2–Fe2O3 inverse opals fabricated by atomic layer deposition. ACS Appl. Mater. Interfaces 2024, 16, 46964–46974. [Google Scholar] [CrossRef]
- Collins, G.; Lonergan, A.; McNulty, D.; Glynn, C.; Buckley, D.; Hu, C.; O’Dwyer, C. Semiconducting metal oxide photonic crystal plasmonic photocatalysts. Adv. Mater. Interfaces 2020, 7, 1901805. [Google Scholar] [CrossRef]
- Raja-Mogan, T.; Lehoux, A.; Takashima, M.; Kowalska, E.; Ohtani, B. Slow photon-induced enhancement of photocatalytic activity of gold nanoparticle-incorporated titania inverse opal. Chem. Lett. 2021, 50, 711–713. [Google Scholar] [CrossRef]
- Temerov, F.; Pham, K.; Juuti, P.; Mäkelä, J.M.; Grachova, E.V.; Kumar, S.; Eslava, S.; Saarinen, J.J. Silver-decorated TiO2 inverse opal structure for visible light-induced photocatalytic degradation of organic pollutants and hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 41200–41210. [Google Scholar] [CrossRef] [PubMed]
- Boppella, R.; Kochuveedu, S.T.; Kim, H.; Jeong, M.J.; Mota, F.M.; Park, J.H.; Kim, D.H. Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting. ACS Appl. Mater. Interfaces 2017, 9, 7075–7083. [Google Scholar] [CrossRef]
- Diamantopoulou, A.; Sakellis, E.; Gardelis, S.; Tsoutsou, D.; Glenis, S.; Boukos, N.; Dimoulas, A.; Likodimos, V. Advanced photocatalysts based on reduced nanographene oxide–TiO2 photonic crystal films. Materials 2019, 12, 2518. [Google Scholar] [CrossRef]
- Apostolaki, M.-A.; Toumazatou, A.; Antoniadou, M.; Sakellis, E.; Xenogiannopoulou, E.; Gardelis, S.; Boukos, N.; Falaras, P.; Dimoulas, A.; Likodimos, V. Graphene quantum dot-TiO2 photonic crystal films for photocatalytic applications. Nanomaterials 2020, 10, 2566. [Google Scholar] [CrossRef]
- Oh, Y.; Yang, W.; Tan, J.; Lee, H.; Park, J.; Moon, J. Boosting visible light harvesting in p-type ternary oxides for solar-to-hydrogen conversion using inverse opal structure. Adv. Funct. Mater. 2019, 29, 1900194. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Zhu, J.; Li, Y.; Jiang, S.; Wu, N.; Wei, Y.; Zhou, J.; Song, Y. Crack-free hematite inverse opal photo-anodes for enhancing photo-electrochemical water splitting. J. Mater. Chem. A 2020, 8, 22929–22937. [Google Scholar] [CrossRef]
- Lin, Q.; Liang, S.; Wang, J.; Zhang, R.; Wang, X. Cadmium sulfide 3D photonic crystal with hierarchically ordered macropores for highly efficient photocatalytic hydrogen generation. Inorg. Chem. 2022, 61, 2920–2928. [Google Scholar] [CrossRef]
- Pylarinou, M.; Sakellis, E.; Tsipas, P.; Romanos, G.E.; Gardelis, S.; Dimoulas, A.; Likodimos, V. Mo-BiVO4/Ca-BiVO4 homojunction nanostructure-based inverse opals for photoelectrocatalytic pharmaceutical degradation under visible light. ACS Appl. Nano Mater. 2023, 6, 6759–6771. [Google Scholar] [CrossRef]
- Dong, Y.; Ai, F.; Sun-Waterhouse, D.; Murai, K.-I.; Moriga, T.; Waterhouse, G.I.N. Optical and photocatalytic properties of three-dimensionally ordered macroporous Ta2O5 and Ta3N5 inverse opals. Chem. Mater. 2023, 35, 8281–8300. [Google Scholar] [CrossRef]
- Deparis, O.; Mouchet, S.R.; Su, B.-L. Light harvesting in photonic crystals revisited: Why do slow photons at the blue edge enhance absorption? PCCP 2015, 17, 30525–30532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, X.; Fu, X.; Teng, D.; Murtaza, G.; Meng, Z.; Jia, Z.; Qiu, L. Slow light effect enhances the photocatalytic effect of inverse opal TiO2-based photonic nanocrystals. ACS Appl. Nano Mater. 2024, 7, 15376–15386. [Google Scholar] [CrossRef]
- Liu, J.; Jin, J.; Li, Y.; Huang, H.-W.; Wang, C.; Wu, M.; Chen, L.-H.; Su, B.-L. Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement. J. Mater. Chem. A 2014, 2, 5051–5059. [Google Scholar] [CrossRef]
- Curti, M.; Mendive, C.B.; Grela, M.A.; Bahnemann, D.W. Stopband tuning of TiO2 inverse opals for slow photon absorption. Mater. Res. Bull. 2017, 91, 155–165. [Google Scholar] [CrossRef]
- Curti, M.; Zvitco, G.; Grela, M.A.; Mendive, C.B. Angle dependence in slow photon photocatalysis using TiO2 inverse opals. Chem. Phys. 2018, 502, 33–38. [Google Scholar] [CrossRef]
- Wang, L.; Mogan, T.R.; Wang, K.; Takashima, M.; Ohtani, B.; Kowalska, E. Fabrication and characterization of inverse-opal titania films for enhancement of photocatalytic activity. ChemEngineering 2022, 6, 33. [Google Scholar] [CrossRef]
- Apostolaki, M.-A.; Sakellis, E.; Tsipas, P.; Giannouri, M.; Gardelis, S.; Boukos, N.; Dimoulas, A.; Likodimos, V. Three-phase co-assembly of compositionally tunable WO3/TiO2 inverse opal photoelectrodes. Appl. Surf. Sci. 2022, 613, 155919. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.-L.; Wang, A.-J.; Wang, Y. Probing photon localization effect between titania and photonic crystals on enhanced photocatalytic activity of titania film. Chem. Eng. J. 2015, 284, 305–314. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, F.; Pang, F.; Ge, J. Substantial enhancement toward the photocatalytic activity of CdS quantum dots by photonic crystal-supporting films. ACS Appl. Mater. Interfaces 2018, 10, 42241–42248. [Google Scholar] [CrossRef]
- Xie, C.; Fan, T.; Wang, A.; Chen, S.-L. Enhanced visible-light photocatalytic activity of a TiO2 membrane-assisted with n-doped carbon quantum dots and SiO2 opal photonic crystal. Ind. Eng. Chem. Res. 2018, 58, 120–127. [Google Scholar] [CrossRef]
- Lan, D.; Sheng, W.; Fu, Q.; Ge, J. Enhancement of CO2 photoreduction efficiency by supporting blue TiO2 with photonic crystal substrate. Nano Res. 2023, 16, 9310–9317. [Google Scholar] [CrossRef]
- Loukopoulos, S.; Toumazatou, A.; Sakellis, E.; Xenogiannopoulou, E.; Boukos, N.; Dimoulas, A.; Likodimos, V. Heterostructured CoOx–TiO2 mesoporous/photonic crystal bilayer films for enhanced visible-light harvesting and photocatalysis. Materials 2020, 13, 4305. [Google Scholar] [CrossRef] [PubMed]
- Taga, Y.; Pan, Z.; Katayama, K.; Sohn, W.Y. BiVO4-Dotted WO3 Photoanode with an inverse opal underlayer for photoelectrochemical water splitting. ACS Appl. Energy Mater. 2022, 5, 5750–5755. [Google Scholar] [CrossRef]
- Madanu, T.L.; Chaabane, L.; Mouchet, S.R.; Deparis, O.; Su, B.-L. Manipulating multi-spectral slow photons in bilayer inverse opal TiO2@BiVO4 composites for highly enhanced visible light photocatalysis. J. Colloid Interface Sci. 2023, 647, 233–245. [Google Scholar] [CrossRef]
- Eftekhari, E.; Broisson, P.; Aravindakshan, N.; Wu, Z.; Cole, I.S.; Li, X.; Zhao, D.; Li, Q. Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. J. Mater. Chem. A 2017, 5, 12803–12810. [Google Scholar] [CrossRef]
- Galisteo-López, J.F.; Galli, M.; Andreani, L.C.; Mihi, A.; Pozas, R.; Ocaña, M.; Míguez, H. Phase delay and group velocity determination at a planar defect state in three dimensional photonic crystals. Appl. Phys. Lett. 2007, 90, 101113. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Gmitter, T.J.; Meade, R.D.; Rappe, A.M.; Brommer, K.D.; Joannopoulos, J.D. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 1991, 67, 3380–3383. [Google Scholar] [CrossRef]
- Karathanos, V.; Modinos, A.; Stefanou, N. Planar defects in photonic crystals. J. Condens. Matter Phys. 1994, 6, 6257–6264. [Google Scholar] [CrossRef]
- Pozas, R.; Mihi, A.; Ocaña, M.; Míguez, H. Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating. Adv. Mater 2006, 18, 1183–1187. [Google Scholar] [CrossRef]
- Palacios-Lidón, E.; Galisteo-López, J.F.; Juárez, B.H.; López, C. Engineered planar defects embedded in opals. Adv. Mater 2004, 16, 341–345. [Google Scholar] [CrossRef]
- Tétreault, N.; Mihi, A.; Míguez, H.; Rodríguez, I.; Ozin, G.A.; Meseguer, F.; Kitaev, V. Dielectric planar defects in colloidal photonic crystal films. Adv. Mater 2004, 16, 346–349. [Google Scholar] [CrossRef]
- Toumazatou, A.; Antoniadou, M.; Sakellis, E.; Tsoutsou, D.; Gardelis, S.; Romanos, G.E.; Ioannidis, N.; Boukos, N.; Dimoulas, A.; Falaras, P.; et al. Boosting visible light harvesting and charge separation in surface modified TiO2 photonic crystal catalysts with CoOx nanoclusters. Mater. Adv. 2020, 1, 2310–2322. [Google Scholar] [CrossRef]
- Rivas-Murias, B.; Salgueiriño, V. Thermodynamic CoO–Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals. J. Raman Spectrosc. 2017, 48, 837–841. [Google Scholar] [CrossRef]
- Qiao, L.; Xiao, H.Y.; Meyer, H.M.; Sun, J.N.; Rouleau, C.M.; Puretzky, A.A.; Geohegan, D.B.; Ivanov, I.N.; Yoon, M.; Weber, W.J.; et al. Nature of the band gap and origin of the electro-/photo-activity of Co3O4. J. Mater. Chem. C 2013, 1, 4628–4633. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, W.; Qin, F.; Fang, H.; Hadjiev, V.G.; Litvinov, D.; Bao, J. Identification of cobalt oxides with Raman scattering and Fourier Transform infrared spectroscopy. J. Phys. Chem. C 2016, 120, 4511–4516. [Google Scholar] [CrossRef]
- Singh, V.; Kosa, M.; Majhi, K.; Major, D.T. Putting DFT to the test: A first-principles study of electronic, magnetic, and optical properties of CO3O4. J. Chem. Theory Comput. 2014, 11, 64–72. [Google Scholar] [CrossRef]
- Singh, V.; Major, D.T. Electronic structure and bonding in Co-based single and mixed valence oxides: A quantum chemical perspective. Inorg. Chem. 2016, 55, 3307–3315. [Google Scholar] [CrossRef]
- Kontos, A.I.; Kontos, A.G.; Tsoukleris, D.S.; Bernard, M.-C.; Spyrellis, N.; Falaras, P. Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol–gel techniques. J. Mater. Process. Technol. 2008, 196, 243–248. [Google Scholar] [CrossRef]
- Dunn, H.K.; Feckl, J.M.; Müller, A.; Fattakhova-Rohlfing, D.; Morehead, S.G.; Roos, J.; Peter, L.M.; Scheu, C.; Bein, T. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. PCCP 2014, 16, 24610–24620. [Google Scholar] [CrossRef]
- Hankin, A.; Bedoya-Lora, F.E.; Alexander, J.C.; Regoutz, A.; Kelsall, G.H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem. A 2019, 7, 26162–26176. [Google Scholar] [CrossRef]
- Jin, Q.; Yamamoto, H.; Yamamoto, K.; Fujishima, M.; Tada, H. Simultaneous induction of high level thermal and visible-light catalytic activities to titanium (IV oxide by surface modification with cobalt(III) oxide clusters. PCCP 2013, 15, 20313. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Jin, Q.; Iwaszuk, A.; Nolan, M. Molecular-scale transition metal oxide nanocluster surface-modified titanium dioxide as solar-activated environmental catalysts. J. Phys. Chem. C 2014, 118, 12077–12086. [Google Scholar] [CrossRef]
- Lang, D.; Cheng, F.; Xiang, Q. Enhancement of photocatalytic H2 production activity of CdS nanorods by cobalt-based cocatalyst modification. Catal. Sci. Technol. 2016, 6, 6207–6216. [Google Scholar] [CrossRef]
Film | D (nm) | λ (15°) (nm) | (air) | (H2O) | λ (0°) (nm) (air) | λ (0°) (nm) (H2O) | |
---|---|---|---|---|---|---|---|
PC406 | 255(5) | 478 | 1.18(2) | 0.070(9) | 1.45(2) | 490(13) | 603(13) |
PC499 | 310(5) | 578 | 1.17(2) | 0.067(9) | 1.44(2) | 593(16) | 731(16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toumazatou, A.; Sakellis, E.; Likodimos, V. Improving Visible Light Photocatalysis Using Optical Defects in CoOx-TiO2 Photonic Crystals. Materials 2024, 17, 5996. https://doi.org/10.3390/ma17235996
Toumazatou A, Sakellis E, Likodimos V. Improving Visible Light Photocatalysis Using Optical Defects in CoOx-TiO2 Photonic Crystals. Materials. 2024; 17(23):5996. https://doi.org/10.3390/ma17235996
Chicago/Turabian StyleToumazatou, Alexia, Elias Sakellis, and Vlassis Likodimos. 2024. "Improving Visible Light Photocatalysis Using Optical Defects in CoOx-TiO2 Photonic Crystals" Materials 17, no. 23: 5996. https://doi.org/10.3390/ma17235996
APA StyleToumazatou, A., Sakellis, E., & Likodimos, V. (2024). Improving Visible Light Photocatalysis Using Optical Defects in CoOx-TiO2 Photonic Crystals. Materials, 17(23), 5996. https://doi.org/10.3390/ma17235996