Enhancing Thermoelectrical Properties of Silver-Nanowire-Embedded Heatable Textiles via Sputter-Mediated Nanowire Structural Modulation
Abstract
1. Introduction
2. Experiment
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Libanori, A.; Chen, G.; Zhao, X.; Zhou, Y.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156. [Google Scholar] [CrossRef]
- Kumar, J.; Pandit, P.; Singha, K. Recent advancements in wearable & smart textiles: An overview. Mater. Today Proc. 2019, 16, 1518–1523. [Google Scholar] [CrossRef]
- Di, J.; Zhang, X.; Young, Z.; Zhang, Y.; Li, D.; Li, R.; Li, Q. Carbon-nanotube fibers for wearable devices and smart textiles. Adv. Mater. 2013, 28, 10529–10538. [Google Scholar] [CrossRef]
- Nesenbergs, K.; Selavo, L. Smart textiles for wearable sensor networks: Review and early lessons. In Proceedings of the IEEE International Symposium on Medical measurements and Applications (MeMeA), Turin, Italy, 7–9 May 2015; pp. 402–406. [Google Scholar] [CrossRef]
- Ouyang, Z.; Li, S.; Liu, J.; Yu, H.Y.; Peng, L.; Zheng, S.; Xu, D.; Tam, K.C. Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring. Nano Energy 2022, 104, 107963. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Liang, X.; Zhang, Y. Smart fibers and textiles for personal health management. ACS Nano 2021, 15, 12497–12508. [Google Scholar] [CrossRef]
- Du, D.; Yang, X.; Yang, Y.; Zhao, Y.; Wang, Y. Silver Nanowire ink for flexible circuit on textiles. Micromachines 2019, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Atwa, Y.; Maheshwari, N.; Goldthorpe, I.A. Silver nanowire coated threads for electrically conductive textiles. J. Mater. Chem. C 2015, 3, 3908–3912. [Google Scholar] [CrossRef]
- Lian, Y.; Yu, H.; Wang, M.; Yang, X.; Li, Z.; Yang, F.; Wang, Y.; Tai, H.; Liao, Y.; Wu, J.; et al. A multifunctional wearable E-textile via integrated nanowire-coated fabrics. J. Mater. Chem. C 2020, 8, 8399–8409. [Google Scholar] [CrossRef]
- Kwon, J.; Suh, Y.D.; Lee, J.; Lee, P.; Han, S.; Hong, S.; Yeo, J.; Lee, H.; Ko, S.H. Recent progress in silver nanowire based flexible/wearable optoelectronics. J. Mater. Chem. C 2018, 6, 7445–7461. [Google Scholar] [CrossRef]
- Ahn, K.; Kim, D.; Kim, O.; Nam, J. Analysis of transparent conductive silver nanowire films from dip coating flow. J. Coat. Technol. Res. 2015, 12, 855–862. [Google Scholar] [CrossRef]
- Bruna, T.; Bravo, F.M.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Cui, Z.; Baker, G.L.; Mahendran, S.; Xie, Z.; Zhu, Y. A biaxially stretchable and self-sensing textile heater using silver nanowire composite. ACS Appl. Mater. Interfaces 2021, 13, 59085–59091. [Google Scholar] [CrossRef]
- Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H.J.; Algadi, H.; Sayari, S.A.; Kim, D.E.; et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Mater. 2015, 25, 3114–3121. [Google Scholar] [CrossRef]
- Huynh, K.A.; Hwang, D.K.; Choi, W.J.; Lee, T.I. Near-infrared transparent transition-metal-doped indium oxide thin-film heater for LiDAR. ACS Appl. Mater. Interfaces 2024, 16, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Nam, V.B.; Shin, J.; Choi, A.; Choi, H.; Ko, S.H.; Lee, D. High-temperature, thin, Flexible and transparent Ni-based heaters patterned by laser-induced reductive sintering on colorless polyimide. J. Mater. Chem. C 2021, 9, 5652–5661. [Google Scholar] [CrossRef]
- Bae, D.; Jung, U.; Lee, H.; Yoo, H.; Moon, S.Y.; Lee, K.H.; Kim, M.J. Synthesis of double-walled boron nitride nanotubes from ammonia borane by thermal plasma methods. ACS Omega 2023, 8, 21514–21521. [Google Scholar] [CrossRef]
- Puttaningaiah, K.P.C.H.; Ramegowda, S.D.; Hur, J. Polymer tetrabenzimidazole aluminum phthalocyanine complex with carbon nanotubes: A promising approach for boosting lithium-ion battery anode performance. ACS Appl. Energy Mater. 2024, 7, 6793–6806. [Google Scholar] [CrossRef]
- Yang, H. Research on application of carbon fiber heating materials in clothing. IOP Conf. Ser. Earth Environ. Sci. 2017, 81, 012042. [Google Scholar] [CrossRef]
- Molina, J. Graphene-based fabrics and their applications: A review. RSC Adv. 2016, 6, 68261–68291. [Google Scholar] [CrossRef]
- Shahidi, S.; Moazzenchi, B. Carbon nanotube and its applications in textile industry—A review. J. Text. Ind. 2018, 109, 1653–1666. [Google Scholar] [CrossRef]
- Gupta, R.; Rao, K.D.M.; Kiruthika, S.; Kulkarni, G.U. Visibly transparent heaters. ACS Appl. Mater. Interfaces 2016, 8, 12559–12575. [Google Scholar] [CrossRef] [PubMed]
- Papanastasiou, D.T.; Schultheiss, A.; Rojas, D.M.; Celle, C.; Carella, A.; Simonato, J.P.; Bellet, D. Transparent heaters: A review. Adv. Funct. Mater. 2020, 30, 1910225. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Cao, S.; Kong, D. A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. J. Mater. Chem. C 2019, 7, 9748–9755. [Google Scholar] [CrossRef]
- Han, S.; Wan, Q.; Zhou, K.; Yan, A.; Lin, Z.; Shu, B.; Liu, C. Sensitive stretchable, and breathable pressure sensors based on medical gauze integrated with silver nanowires and elastomers. ACS Appl. Nano Mater. 2021, 4, 8273–8281. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Y. Development of woven textile electrodes with enhanced moisture-wicking properties. J. Text. Institude 2020, 112, 1067–1079. [Google Scholar] [CrossRef]
- Farooq, A.S.; Zhang, P. Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos. Part A Appl. Sci. Manuf. 2021, 142, 107963. [Google Scholar] [CrossRef]
- Jones, C.M.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Doganay, D.; Kanicioglu, A.; Coskun, S.; Akca, G.; Unalan, H.E. Silver-nanowire-modified fabrics for wide-spectrum antimicrobial applications. J. Mater. Res. 2019, 34, 500–509. [Google Scholar] [CrossRef]
- Ding, C.; Qi, N.; Zhao, B. Electronic textiles based on silver nanowire conductive network. Prog. Chem. 2017, 29, 892–901. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, S.; Lin, Y.; Yuan, X.; Liu, L. Silver nanowires coated on cotton for flexible pressure sensors. J. Mater. Chem. C 2016, 4, 935–943. [Google Scholar] [CrossRef]
- Doganay, D.; Coskun, S.; Genlik, S.P.; Unalan, H.E. Silver nanowire decorated heatable textiles. Nanotechnology 2016, 27, 435201. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.M.K.; Hansel, S.; Boese, M.; Krstic, V. Impact of surface and twin-boundary scattering on the electrical transport properties of Ag nanowires. Solid State Commun. 2015, 202, 48–51. [Google Scholar] [CrossRef]
- Durkan, C.; Welland, M.E. Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B 2000, 61, 14215–14218. [Google Scholar] [CrossRef]
- Fuchs, K. The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Camb. Philos. Soc. 1938, 34, 100–108. [Google Scholar] [CrossRef]
- Sondheimer, E.H. The mean free path of electrons in metals. Adv. Phys. 1952, 1, 1–42. [Google Scholar] [CrossRef]
- Joo, S.H.; Choi, D.H. Numerical evaluation of grain boundary electron scattering in molybdenum thin films: A critical analysis for advanced interconnects. Vacuum 2024, 222, 1136025. [Google Scholar] [CrossRef]
- Jeong, E.; Lee, T.; Choi, D.; Yu, S.M.; Lee, S.G.; Bae, J.S.; Han, S.Z.; Lee, G.H.; Ikoma, Y.; Choi, E.A.; et al. Strategy for 564 fabricating ultrathin Au film electrodes with ultralow optoelectrical 565 losses and high stability. ACS Appl. Mater. Interfaces 2022, 14, 12797–12811. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, D.; Suk, M.E.; Bang, G.; Choi, J.; Bae, J.S.; Yoon, J.H.; Moon, W.J.; Choi, D. Regulating Ag wettability via modulating surface stoichiometry of ZnO substrates for flexible electronics. Adv. Funct. Mater. 2021, 31, 2104372. [Google Scholar] [CrossRef]
- Vo, T.T.B.; Lim, J.; Joo, S.H.; Kim, H.; Lee, T.; Bae, J.S.; Jeong, E.; Kwon, M.S.; Yun, J.; Choi, D. Smooth, chemically altered nucleating platform for abrupt performance enhancement of ultrathin Cu-layer-based transparent electrodes. Nano Lett. 2023, 23, 6528–6535. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.; Park, J.; Choi, D. Enhancing Thermoelectrical Properties of Silver-Nanowire-Embedded Heatable Textiles via Sputter-Mediated Nanowire Structural Modulation. Materials 2024, 17, 5514. https://doi.org/10.3390/ma17225514
Lee C, Park J, Choi D. Enhancing Thermoelectrical Properties of Silver-Nanowire-Embedded Heatable Textiles via Sputter-Mediated Nanowire Structural Modulation. Materials. 2024; 17(22):5514. https://doi.org/10.3390/ma17225514
Chicago/Turabian StyleLee, Chankyoung, Jaewoo Park, and Dooho Choi. 2024. "Enhancing Thermoelectrical Properties of Silver-Nanowire-Embedded Heatable Textiles via Sputter-Mediated Nanowire Structural Modulation" Materials 17, no. 22: 5514. https://doi.org/10.3390/ma17225514
APA StyleLee, C., Park, J., & Choi, D. (2024). Enhancing Thermoelectrical Properties of Silver-Nanowire-Embedded Heatable Textiles via Sputter-Mediated Nanowire Structural Modulation. Materials, 17(22), 5514. https://doi.org/10.3390/ma17225514