Time-Dependent Evolution of Al–Al4C3 Composite Microstructure and Hardness during the Sintering Process
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural Analysis
3.2. Hardness Analysis
4. Discussion
5. Conclusions
- -
- The strengthening effect, as determined from the CMWP and Taylor equations for the green state samples:
- -
- The strengthening effect for samples sintered for 2, 4, and 6 h was evaluated using the CMWP and Taylor equations:
- -
- HRTEM analysis combined with geometric phase analysis (GPA):
- -
- Microstructural parameters determined from CMWP program:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, S.; Wang, T.; Jin, K.; Cai, X. Understanding and designing metal matrix nanocomposites with high electrical conductivity: A review. J. Mater. Sci. 2022, 57, 6487–6523. [Google Scholar] [CrossRef]
- Saboori, A.; Moheimani, S.K.; Dadkhah, M.; Pavese, M.; Badini, C.; Fino, P. An Overview of Key Challenges in the Fabrication of Metal Matrix Nanocomposites Reinforced by Graphene Nanoplatelets. Metals 2018, 8, 172. [Google Scholar] [CrossRef]
- Rohatgi, P.K.; M., A.D.; Schultz, B.F.; Ferguson, J.B. Synthesis and Properties of Metal Matrix Nanocomposites (MMNCS), Syntactic Foams, Self Lubricating and Self-Healing Metals. In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing; Marquis, F., Ed.; Springer: Cham, Switzerland, 2013. [Google Scholar] [CrossRef]
- Patro, L. Role of mechanical milling on the synthesis and ionic transport properties of fast fluoride ion conducting materials. J. Solid State Electrochem. 2020, 24, 2219–2232. [Google Scholar] [CrossRef]
- Sambathkumar, M.; Gukendran, R.; Mohanraj, T.; Karupannasamy, D.K.; Natarajan, N.; Christopher, D.S. A Systematic Review on the Mechanical, Tribological, and Corrosion Properties of Al 7075 Metal Matrix Composites Fabricated through Stir Casting Process. Adv. Mater. Sci. Eng. 2023, 2023, 5442809. [Google Scholar] [CrossRef]
- Anuar, N.F.B.W.; Salleh, M.S.; Omar, M.Z.; Zamri, W.F.H.W.; Ali, A.M.; Samat, S. Wear properties of graphene-reinforced aluminium metal matrix composite: A review. Rev. Adv. Mater. Sci. 2023, 62, 20220326. [Google Scholar] [CrossRef]
- Velgosová, O.; Besterci, M.; Balloková, B. Influence of Al4C3 nanophase on structural stability and mechanical properties of Al-Al4C3 composites after thermal exposure. Metall. Res. Technol. 2018, 115, 606. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, Z.; Kubota, K.; Ono, H.; Nomura, N.; Kawasaki, A. Design of high-performance Al4C3/Al matrix composites for electric conductor. Mater. Sci. Eng. A 2020, 798, 140331. [Google Scholar] [CrossRef]
- Hernández, F.R.; Calderon, H. Nanostructured Al/Al4C3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering. Mater. Chem. Phys. 2012, 132, 815–822. [Google Scholar] [CrossRef]
- Kulkov, S.N.; Vorozhtsov, S.A. Structure and mechanical behavior of Al–Al4C3 composites. Russ. Phys. J. 2011, 53, 1153–1157. [Google Scholar] [CrossRef]
- Vorozhtsov, S.; Vorozhtsov, A.; Kulkov, S. The structure, phase composition and mechanical properties of hot metal matrix nanocomposites Al-Al4C3. TMS Light Metals 2014, 2014, 1431–1435. [Google Scholar] [CrossRef]
- Zhang, Z.; Ódor, É.; Farkas, D.; Jóni, B.; Ribárik, G.; Tichy, G.; Nandam, S.-H.; Ivanisenko, J.; Preuss, M.; Ungár, T. Dislocations in Grain Boundary Regions: The Origin of Heterogeneous Microstrains in Nanocrystalline Materials. Met. Mater. Trans. A 2020, 51, 513–530. [Google Scholar] [CrossRef]
- Pinate, S.; Ghassemali, E.; Zanella, C. Strengthening mechanisms and wear behavior of electrodeposited Ni–SiC nanocomposite coatings. J. Mater. Sci. 2022, 57, 16632–16648. [Google Scholar] [CrossRef]
- Ståhlkrantz, A.; Hedström, P.; Sarius, N.; Borgenstam, A. Influence of Austempering Conditions on Hardness and Microstructure of Bainite in Low-Alloyed Steel. Met. Mater. Trans. A 2024, 55, 209–217. [Google Scholar] [CrossRef]
- Ribárik, G.; Jóni, B.; Ungár, T. The Convolutional Multiple Whole Profile (CMWP) Fitting Method, a Global Optimization Procedure for Microstructure Determination. Crystals 2020, 10, 623. [Google Scholar] [CrossRef]
- Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 1999, 32, 992–1002. [Google Scholar] [CrossRef]
- Borbély, A.; Dragomir-Cernatescu, J.; Ribárik, G.; Ungár, T. Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. J. Appl. Crystallogr. 2003, 36, 160–162. [Google Scholar] [CrossRef]
- Wilkens, M. The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles. Phys. Status Solidi 1970, 2, 359–370. [Google Scholar] [CrossRef]
- Santos-Beltrán, A.; Goytia-Reyes, R.; Morales-Rodriguez, H.; Gallegos-Orozco, V.; Santos-Beltrán, M.; Baldenebro-Lopez, F.; Martínez-Sánchez, R. Characterization of Al–Al4C3 nanocomposites produced by mechanical milling. Mater. Charact. 2015, 106, 368–374. [Google Scholar] [CrossRef]
- Klinger, M. CrysTBox—Crystallographic Toolbox; Institute of Physics of the Czech Academy of Sciences: Prague, Czechia, 2015; ISBN 978-80-905962-3-8. Available online: http://www.fzu.cz/~klinger/crystbox.pdf (accessed on 26 June 2023).
- Hÿtch, M.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146. [Google Scholar] [CrossRef]
- Ungár, T.; Gubicza, J.; Ribárik, G.; Borbély, A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 2001, 34, 298–310. [Google Scholar] [CrossRef]
- Cahn, R.W.; Haasen, P.; Argon, A.S. Physical metallurgy. In Mechanical Properties of Single-Phase Crystalline Media, Deformation at Low Temperature, 4th ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996; pp. 1878–1955. [Google Scholar]
- Orozco, V.G.; Beltrán, A.S.; Beltrán, M.S.; Prieto, H.M.; Orozco, C.G.; Guel, I.E. Effect on Microstructure and Hardness of Reinforcement in Al–Cu with Al4C3 Nanocomposites. Metals 2021, 11, 1203. [Google Scholar] [CrossRef]
- Feijoo, I.; Pena, G.; Cristóbal, M.J.; Cabeza, M.; Rey, P. Effect of Carbon Nanotube Content and Mechanical Milling Conditions on the Manufacture of AA7075/MWCNT Composites. Metals 2022, 12, 1020. [Google Scholar] [CrossRef]
- Lee, W.-R.; Kim, M.G.; Choi, J.-R.; Park, J.-I.; Ko, S.J.; Oh, S.J.; Cheon, J. Redox−Transmetalation Process as a Generalized Synthetic Strategy for Core−Shell Magnetic Nanoparticles. J. Am. Chem. Soc. 2005, 127, 16090–16097. [Google Scholar] [CrossRef]
- Ferguson, J.B.; Lopez, H.; Kongshaug, D.; Schultz, B.; Rohatgi, P. Revised Orowan Strengthening: Effective Interparticle Spacing and Strain Field Considerations. Met. Mater. Trans. A 2012, 43, 2110–2115. [Google Scholar] [CrossRef]
- Kim, J.; Ghaffarian, H.; Kang, K. The lattice dislocation trapping mechanism at the ferrite/cementite interface in the Isaichev orientation relationship. Sci. Rep. 2021, 11, 9324. [Google Scholar] [CrossRef] [PubMed]
- Charleston, J.; Agrawal, A.; Mirzaeifar, R. Effect of interface configuration on the mechanical properties and dislocation mechanisms in metal graphene composites. Comput. Mater. Sci. 2020, 178, 109621. [Google Scholar] [CrossRef]
- Jayaseelan, J.; Pazhani, A.; Michael, A.X.; Paulchamy, J.; Batako, A.; Guruswamy, P.K.H. Characterization Studies on Graphene-Aluminium Nano Composites for Aerospace Launch Vehicle External Fuel Tank Structural Application. Materials 2022, 15, 5907. [Google Scholar] [CrossRef]
- Hou, Y.N.; Yang, K.M.; Song, J.; Wang, H.; Liu, Y.; Fan, T.X. A crystal plasticity model for metal matrix composites considering thermal mismatch stress induced dislocations and twins. Sci. Rep. 2021, 11, 16053. [Google Scholar] [CrossRef]
- Wong, C.S.; Pramanik, A.; Basak, A.K. Residual stress generation in metal matrix composites after cooling. Mater. Sci. Technol. 2018, 34, 1388–1400. [Google Scholar] [CrossRef]
- Tochigi, E.; Nakamura, A.; Shibata, N.; Ikuhara, Y. Dislocation Structures in Low-Angle Grain Boundaries of α-Al2O3. Crystals 2018, 8, 133. [Google Scholar] [CrossRef]
- Föll, H.; Ast, D. TEM observations on grain boundaries in sintered silicon. Philos. Mag. A 1979, 40, 589–610. [Google Scholar] [CrossRef]
- Belov, A.; Scholz, R.; Scheerschmidt, K. Dissociation of screw dislocations in (001) low-angle twist boundaries: A source of the 30 o partial dislocations in silicon. Philos. Mag. Lett. 1999, 79, 531–538. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.P.; Da Yu, Y.; Skaret, P.C.; Roven, H.J. Microstructural Characterization of an Al-Mg-Si Aluminum Alloy Processed by Equal Channel Angular Pressing. Mater. Sci. Forum 2013, 745–746, 303–308. [Google Scholar] [CrossRef]
- Gilman, J.J. Influence of dislocation dipoles on physical properties. Discuss. Faraday Soc. 1964, 38, 123–137. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, P.; Yang, Y.; Shi, W.; Qiu, M.; Wang, H.; Xie, P. Dislocation Mechanism and Grain Refinement of Surface Modification of NV E690 Cladding Layer Induced by Laser Shock Peening. Materials 2022, 15, 7254. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Wang, H.; Guo, Q.; Wang, Z.; Liu, W.; Huang, Y. The Construction of a Lattice Image and Dislocation Analysis in High-Resolution Characterizations Based on Diffraction Extinctions. Materials 2024, 17, 555. [Google Scholar] [CrossRef] [PubMed]
- Kroupa, F. Dislocation Dipoles and Dislocation Loops. J. Phys. Colloq. 1966, 27, C3-154–C3-167. [Google Scholar] [CrossRef]
- Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
Nomenclature | Al (wt.%) | Mix, Mixture Powder (wt.%) | Sintering Time (h) |
---|---|---|---|
Al-10 | 99 | 1 | 0 |
Al-12 | 99 | 1 | 2 |
Al-14 | 99 | 1 | 4 |
A-16 | 99 | 1 | 6 |
Al-20 | 98 | 2 | 0 |
Al-22 | 98 | 2 | 2 |
Al-24 | 98 | 2 | 4 |
Al-26 | 98 | 2 | 6 |
Composition | Dislocations ρ (1014 m−2) | <x>area (nm) | m (nm) | σ | q | M | Re (nm) |
---|---|---|---|---|---|---|---|
Al-10 | 28.6 | 55.3 | 41.1 | 0.34 | 1.41 | 0.44 | 8.26 |
Al-12 | 4.7 | 172.5 | 21.0 | 0.91 | 1.56 | 0.44 | 20.33 |
Al-14 | 2.9 | 154.0 | 36.1 | 0.76 | 1.11 | 0.34 | 20.02 |
A1-16 | 1.8 | 184.3 | 55.0 | 0.69 | 1.58 | 1.37 | 102.38 |
Al-20 | 17.1 | 48.6 | 40.2 | 0.27 | 1.10 | 0.76 | 18.34 |
Al-22 | 4.6 | 139.2 | 34.2 | 0.75 | 1.55 | 0.31 | 14.50 |
Al-24 | 4.16 | 199.3 | 53.7 | 0.72 | 1.03 | 0.34 | 16.81 |
Al-26 | 3.87 | 271.8 | 101.5 | 0.62 | 1.29 | 0.38 | 19.72 |
Sample | HL | HC | HD | HL + HC + HD | HP HEXP − (HL + HC + HD) | HEXP | Std Dev. |
---|---|---|---|---|---|---|---|
A1-10 | 29.4 | 23.6 | 79.6 | 132.6 | 4.03 | 129.2 | 24.4 |
Al-12 | 25.3 | 7.5 | 32.4 | 65.2 | −0.02 | 224.3 | 8.7 |
Al-14 | 25.3 | 8.4 | 25.5 | 59.2 | 2.6 | 115.8 | 12.3 |
Al-16 | 25.3 | 7.1 | 19.9 | 52.3 | 57.1 | 115.3 | 25.7 |
Al-20 | 29.4 | 26.8 | 61.6 | 117.8 | 44.3 | 143.8 | 7.8 |
Al-22 | 25.3 | 9.3 | 32.1 | 66.7 | 21.5 | 297.7 | 2.0 |
Al-24 | 25.3 | 6.5 | 30.4 | 62.2 | 43.3 | 165.3 | 3.4 |
Al-26 | 25.3 | 4.8 | 29.3 | 59.4 | 55.3 | 109.1 | 23.2 |
Composition | Tensile Strength σmax (Mpa) | Microhardness (VH) | Method | Refs. |
---|---|---|---|---|
Al-1/2 wt.% of Mix | ~224/~298 | MM and sintering | This work | |
Al-4 wt.% of Al4C3 | ~295 | ~40.2 | MM and extrusion | [7] |
Al-0.2/0.4 wt.% of Al4C3 | 166.2/183.1 | ~40/~45 | SPS and Hot extrusion | [8] |
Al~7.5 wt.% of C and 7.5 wt.% of Fullerene | ~188/~292 | SPS and MM | [9] | |
Al-5/10 wt.% of Al4C3 | ~190/300 | ~63 */~100 * | Hot pressing | [10] |
Al-5/10 wt.% of C | 400/600 | ~130 */~200 * | Hot pressing | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Beltrán, A.; Gallegos Orozco, V.; Santos Beltrán, M.; Medrano Prieto, H.; Estrada Guel, I.; Gallegos Orozco, C.; Martínez Sánchez, R. Time-Dependent Evolution of Al–Al4C3 Composite Microstructure and Hardness during the Sintering Process. Materials 2024, 17, 4818. https://doi.org/10.3390/ma17194818
Santos Beltrán A, Gallegos Orozco V, Santos Beltrán M, Medrano Prieto H, Estrada Guel I, Gallegos Orozco C, Martínez Sánchez R. Time-Dependent Evolution of Al–Al4C3 Composite Microstructure and Hardness during the Sintering Process. Materials. 2024; 17(19):4818. https://doi.org/10.3390/ma17194818
Chicago/Turabian StyleSantos Beltrán, Audel, Verónica Gallegos Orozco, Miriam Santos Beltrán, Hansel Medrano Prieto, Ivanovich Estrada Guel, Carmen Gallegos Orozco, and Roberto Martínez Sánchez. 2024. "Time-Dependent Evolution of Al–Al4C3 Composite Microstructure and Hardness during the Sintering Process" Materials 17, no. 19: 4818. https://doi.org/10.3390/ma17194818
APA StyleSantos Beltrán, A., Gallegos Orozco, V., Santos Beltrán, M., Medrano Prieto, H., Estrada Guel, I., Gallegos Orozco, C., & Martínez Sánchez, R. (2024). Time-Dependent Evolution of Al–Al4C3 Composite Microstructure and Hardness during the Sintering Process. Materials, 17(19), 4818. https://doi.org/10.3390/ma17194818