# Temperature Effects of Nuclear and Electronic Stopping Power on Si and C Radiation Damage in 3C-SiC

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Methods

#### 2.1. SiC Samples and Irradiation Condition

^{28}Si and

^{12}C ions and doses corresponding to the value of 0.01 displacements per atom (dpa) determined at a depth ∼400 nm or 0.05 dpa at a depth ∼500 nm as predicted by the SRIM code [31].

#### 2.2. SRIM Prediction

^{−3}. Each simulation was performed in the full-cascade mode using 50,000 ions. The dpa was determined by summing up vacancies from Si and C elements from the VACANCY.txt file and replacements collisions from the NOVAC.txt file. The ion energies and fluences were chosen to represent different ratios of electronic energy deposition to nuclear energy deposition with the same damage dose. The 21 MeV Si and 5 MeV C ions reveal a high electronic energy loss, while the nuclear energy loss is negligible (see Figure 1). The choice of the irradiation fluences was made to obtain the same dose (0.01 dpa) at a depth of 400 nm (see Figure 2a,b). Additionally, the Si irradiation was performed with increased fluences to achieve the dose 0.05 dpa at depth of 500 nm (see Figure 2c).

#### 2.3. RBS/C Analysis

^{4}He ion beam. The backscattered He ions were detected by a silicon surface barrier detector at an angle of 170°. A goniometer allows rotation of a sample holder in two mutually orthogonal planes (angles theta and phi). For each sample, random spectra were recorded by tilting a sample at angles $\theta $ and $\varphi $ of −4° off the normal to the surface and consequently changing one of them within the range (−4°, +4°) with a step of 0.2°, while the other one was fixed at −4° or +4°, respectively. Such random measurements also allow a high-precision alignment of the sample along the ion beam by the indication of the main crystallographic planes. The sample orientation for the measurements in channeling mode is determined by the values of the theta and phi angles corresponding to the intersection of the crystallographic planes. RBS/C analysis allows the evaluation of disorder after irradiation. The crystalline quality of an as-grown sample was evaluated as the ratio of the backscattered yield of an aligned pristine spectrum to that of the random spectrum.

#### 2.4. McChasy Code

## 3. Results and Discussion

#### 3.1. Modeling Effects of Electronic Energy Deposition

^{−14}s leading to its very high temperatures of order 10

^{5}°C. This thermal energy can be then transferred to the atoms by means of electron–phonon coupling. Similar to the electron gas, the atomic subsystem can also be characterized by a thermodynamic temperature of many thousand degrees reached in 10

^{−13}–10

^{−12}s, finally resulting in molten ion tracks. The increasing track radius can be accounted for using the diffusion equations of both electronic and atomic subsystems, as presented in Equations (1) and (2), where ${T}_{a}$, ${T}_{e}$ are lattice and electron temperature, respectively, ${C}_{a}$ and ${C}_{e}$ are lattice and electron specific heat, respectively, ${K}_{a}$ and ${K}_{e}$ are lattice and electrons heat conductivity, respectively, and g is the electron–phonon coupling:

^{−3}K

^{−1}and constant electronic diffusivity $\left({D}_{e}\right)$ 2 cm

^{2}s

^{−1}. Electron thermal conductivity is ${K}_{e}={C}_{e}\xb7{D}_{e}$. In the case of electron density, the allocation of one electron per atom is taken into account. Lattice-specific heat and lattice thermal conductivity of SiC are based on Equations (4) and (5), respectively (the temperature ${T}_{a}$, is in Kelvin Scale) [6]:

#### 3.2. Effect of Defects on Energy Deposition in the Center of Ion Path

^{12}W cm

^{−3}K

^{−1}(the mean free path equal 5.6 nm [25]). However the electron–phonon coupling depends on the defects in the crystal structure of SiC and can be higher by several orders of magnitude for the defective structure compared to pristine 3C-SiC [44]. For example, Smairat and Graham calculated that at RT, for 3C-SiC structure with a vacancy concentration of 12.5% electron–phonon coupling can be equal 10

^{14}W cm

^{−3}K

^{−1}and increases as the electron gas temperature increases [44].

#### 3.3. RBS/C Analysis

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations and Symbols

SiC | Silicon Carbide, |

TRISO | Tristructural Isotropic Particle Fuel, |

DFR | Dual Fluid Reactor, |

RBS/C | Channeling Rutherford Backscattering Spectrometry, |

TS | thermal spike, |

RT | room temperature, |

HT | high temperature, |

${S}_{e}$ | electronic energy loss, |

dpa | displacements per atom, |

McChasy-1 | Monte Carlo CHAnneling SYmulation code, |

RDAs | Randomly Displaced Atoms, |

${T}_{a}$ | lattice temperature, |

${T}_{e}$ | electron temperature, |

${C}_{a}$ | lattice specific heat, |

${C}_{e}$ | electron specific heat, |

${K}_{a}$ | lattice heat conductivity, |

${K}_{e}$ | electrons heat conductivity, |

g | electron-phonon coupling |

A(r, t) | the energy deposited in the electronic subsystem, |

b | a normalization factor, |

F(r) | a radial distribution of the delta-electrons, |

${t}_{0}$ | the time of the energy deposition from electrons, |

s | the half-width of the Gaussian distribution, |

$\lambda $ | the mean-free path, |

$D\_e$ | electronic diffusivity, |

${\chi}_{min}$ | minimum yield. |

## References

- Katoh, Y.; Snead, L. Silicon carbide and its composites for nuclear applications—Historical overview. J. Nucl. Mater.
**2019**, 526, 151849. [Google Scholar] [CrossRef] - Wang, F.F.; Zhang, Z. Overview of silicon carbide technology: Device, converter, system, and application. Cpss Trans. Power Electron. Appl.
**2016**, 1, 13–32. [Google Scholar] [CrossRef] - Bausier, F.; Massetti, S.; Tonicello, F. Silicon Carbide for Space Power Applications. In The ESA Special Publication, Proceedings of the 10th European Space Power Conference, Noordwijkerhout, The Netherlands, 13–17 August 2014; Ouwehand, L., Ed.; ESA Special Publication: Paris, France, 2014; Volume 719, p. 7. [Google Scholar]
- Zhang, X.; Hu, H.; Wang, X.; Luo, X.; Zhang, G.; Zhao, W.; Wang, X.; Liu, Z.; Xiong, L.; Qi, E.; et al. Challenges and strategies in high-accuracy manufacturing of the world’s largest SiC aspheric mirror. Light Sci. Appl.
**2022**, 11, 310. [Google Scholar] [CrossRef] [PubMed] - Millán, J.; Godignon, P.; Perpiñà, X.; Pérez-Tomás, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron.
**2014**, 29, 2155–2163. [Google Scholar] [CrossRef] - Snead, L.; Nozawa, T.; Katoh, Y.; Byun, T.; Kondo, S.A.D. Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater.
**2007**, 371, 329–377. [Google Scholar] [CrossRef] - Huke, A.; Ruprecht, G.; Weißbach, D.; Gottlieb, S.; Hussein, A.; Czerski, K. The Dual Fluid Reactor—A novel concept for a fast nuclear reactor of high efficiency. Ann. Nucl. Energy
**2015**, 80, 225–235. [Google Scholar] [CrossRef] - Sierchuła, J.; Dabrowski, M.; Czerski, K. Negative temperature coefficients of reactivity for metallic fuel Dual Fluid Reactor. Prog. Nucl. Energy
**2022**, 146, 104126. [Google Scholar] [CrossRef] - Zinkle, S.; Snead, L. Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations. Scr. Mater.
**2018**, 143, 154–160. [Google Scholar] [CrossRef] - Was, G.S. Challenges to the use of ion irradiation for emulating reactor irradiation. J. Mater. Res.
**2015**, 30, 1158–1182. [Google Scholar] [CrossRef] - Schiwietz, G.; Czerski, K.; Roth, M.; Staufenbiel, F.; Grande, P. Femtosecond dynamics—Snapshots of the early ion-track evolution. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
**2004**, 225, 4–26. [Google Scholar] [CrossRef] - Toulemonde, M.; Paumier, E.; Dufour, C. Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defects Solids
**1993**, 126, 201–206. [Google Scholar] [CrossRef] - Zhang, Y.; Sachan, R.; Pakarinen, O.H.; Chisholm, M.F.; Peng, L.; Xue, H.; Weber, W.J. Ionization-induced annealing of pre-existing defects in silicon carbide. Nat. Commun.
**2015**, 6, 8049. [Google Scholar] [CrossRef] [PubMed] - Zhang, Y.; Xue, X.; Zarkadoula, E.; Sachan, R.; Ostrouchov, C.; Liu, P.; Wang, X.; Zhang, S.; Wang, T.; Weber, W. Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation. Curr. Opin. Solid State Mater. Sci.
**2017**, 21, 285–298. [Google Scholar] [CrossRef] - Nuckols, L.; Crespillo, M.; Xu, C.; Zarkadoula, E.; Zhang, Y.; Weber, W. Coupled effects of electronic and nuclear energy deposition on damage accumulation in ion-irradiated SiC. Acta Mater.
**2020**, 199, 96–106. [Google Scholar] [CrossRef] - Toulemonde, M.; Dufour, C.; Paumier, E. The Ion–Matter Interaction with Swift Heavy Ions in the Light of Inelastic Thermal Spike Model. Acta Phys. Pol. A
**2006**, 109, 311–322. [Google Scholar] [CrossRef] - Saifulin, M.; O’Connell, J.; Skuratov, V.; van Vuuren, A.J. Conicity of latent tracks in the near surface region as a factor affecting the correct evaluation of track size. Phys. Status Solidi C
**2016**, 13, 908–912. [Google Scholar] [CrossRef] - Kamarou, A.; Wesch, W.; Wendler, E.; Undisz, A.; Rettenmayr, M. Swift heavy ion irradiation of InP: Thermal spike modeling of track formation. Phys. Rev. B
**2006**, 73, 184107. [Google Scholar] [CrossRef] - Weber, W.; Duffy, D.; Thomé, L.; Zhang, Y. The role of electronic energy loss in ion beam modification of materials. Curr. Opin. Solid State Mater. Sci.
**2015**, 19, 1–11. [Google Scholar] [CrossRef] - Zinkle, S.; Skuratov, V.; Hoelzer, D. On the conflicting roles of ionizing radiation in ceramics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
**2002**, 191, 758–766. [Google Scholar] [CrossRef] - Debelle, A.; Backman, M.; Thomé, L.; Weber, W.J.; Toulemonde, M.; Mylonas, S.; Boulle, A.; Pakarinen, O.H.; Juslin, N.; Djurabekova, F.; et al. Combined experimental and computational study of the recrystallization process induced by electronic interactions of swift heavy ions with silicon carbide crystals. Phys. Rev. B
**2012**, 86, 100102. [Google Scholar] [CrossRef] - Debelle, A.; Thomé, L.; Monnet, I.; Garrido, F.; Pakarinen, O.; Weber, W. Ionization-induced thermally activated defect-annealing process in SiC. Phys. Rev. Mater.
**2019**, 3, 063609. [Google Scholar] [CrossRef] - Chakravorty, A.; Dufour, C.; Singh, B.; Jatav, H.; Umapathy, G.R.; Kanjilal, D.; Kabiraj, D. Recovery of ion-damaged 4H-SiC under thermal and ion beam-induced ultrafast thermal spike-assisted annealing. J. Appl. Phys.
**2021**, 130, 165901. [Google Scholar] [CrossRef] - Chakravorty, A.; Jatav, H.; Kabiraj, D.; Kanjilal, D.; Ojha, S.; Singh, B.; Singh, J. Intense ionizing irradiation-induced atomic movement toward recrystallization in 4H-SiC. J. Appl. Phys.
**2020**, 128, 165901. [Google Scholar] [CrossRef] - Backman, M.; Toulemonde, M.; Pakarinen, O.; Juslin, N.; Djurabekova, F.; Nordlund, K.; Debelle, A.; Weber, W. Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC. Comput. Mater. Sci.
**2013**, 67, 261–265. [Google Scholar] [CrossRef] - Sreelakshmi, N.; Amirthapandian, S.; Umapathy, G.; David, C.; Srivastava, S.; Ojha, S.; Panigrahi, B. Raman scattering investigations on disorder and recovery induced by low and high energy ion irradiation on 3C-SiC. Mater. Sci. Eng. B
**2021**, 273, 115452. [Google Scholar] [CrossRef] - Lunéville, L.; Simeone, D.; Jouanne, C. Calculation of radiation damage induced by neutrons in compound materials. J. Nucl. Mater.
**2006**, 353, 89–100. [Google Scholar] [CrossRef] - Jozwik, P.; Nowicki, L.; Ratajczak, R.; Stonert, A.; Mieszczynski, C.; Turos, A.; Morawiec, K.; Lorenz, K.; Alves, E. Monte Carlo simulations of ion channeling in crystals containing dislocations and randomly displaced atoms. J. Appl. Phys.
**2019**, 126, 195107. [Google Scholar] [CrossRef] - Jozwik, P.; Nowicki, L.; Ratajczak, R.; Mieszczynski, C.; Stonert, A.; Turos, A.; Lorenz, K.; Alves, E. Advanced Monte Carlo Simulations for Ion-Channeling Studies of Complex Defects in Crystals. In Theory and Simulation in Physics for Materials Applications: Cutting-Edge Techniques in Theoretical and Computational Materials Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 133–160. [Google Scholar] [CrossRef]
- Jóźwik, P.; Caçador, A.; Lorenz, K.; Ratajczak, R.; Mieszczyński, C. Monte Carlo simulations of ion channeling in the presence of dislocation loops: New development in the McChasy code. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
**2023**, 538, 198–204. [Google Scholar] [CrossRef] - Ziegler, J.F.; Biersack, J.P.; Ziegler, M.D. SRIM: The Stopping and Range of Ions in Matter; Chester (Md.); SRIM Company: Kuala Lumpur, Malaysia, 2008. [Google Scholar]
- Weber, W.; Zhang, Y. Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations. Curr. Opin. Solid State Mater. Sci.
**2019**, 23, 100757. [Google Scholar] [CrossRef] - Devanathan, R.; Weber, W.J.; Gao, F. Atomic scale simulation of defect production in irradiated 3C-SiC. J. Appl. Phys.
**2001**, 90, 2303–2309. [Google Scholar] [CrossRef] - Chang, J.; Cho, J.; Gil, C.; Lee, W. A simple method to calculate the displacement damage cross section of Silicon Carbide. Nucl. Eng. Technol.
**2014**, 46, 475–480. [Google Scholar] [CrossRef] - Waligórski, M.; Hamm, R.; Katz, R. The radial distribution of dose around the path of a heavy ion in liquid water. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas.
**1986**, 11, 309–319. [Google Scholar] [CrossRef] - Dufour, C.; Audouard, A.; Beuneu, F.; Dural, J.; Girard, J.; Hairie, A.; Levalois, M.; Paumier, E.; Toulemonde, M. A high-resistivity phase induced by swift heavy-ion irradiation of Bi: A probe for thermal spike damage? J. Phys. Condens. Matter
**1993**, 5, 4573. [Google Scholar] [CrossRef] - Toulemonde, M.; Assmann, W.; Dufour, C.; Meftah, A.; Studer, F.; Trautmann, C. Experimental phenomena and thermal spike description of ion Tracks in Amorphisable Inorganic Insulators. Mat. Fys. Meddelelser
**2006**, 52, 263–292. [Google Scholar] - Dufour, C.; Toulemonde, M. Models for the Description of Track Formation. In Ion Beam Modification of Solids; Springer Series in Surface Sciences; Wesch, W., Wendler, E., Eds.; Springer: Cham, Switzerland, 2016; Volume 61, pp. 63–104. [Google Scholar] [CrossRef]
- Dufour, C.; Khomrenkov, V.; Wang, Y.Y.; Wang, Z.G.; Aumayr, F.; Toulemonde, M. An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: Comparison to swift heavy ions effects and extension to some others material. J. Phys. Condens. Matter
**2017**, 29, 095001. [Google Scholar] [CrossRef] - Dufour, C.; Khomenkov, V.; Rizza, G.; Toulemonde, M. Ion-matter interaction: The three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions. J. Phys. D Appl. Phys.
**2012**, 45, 065302. [Google Scholar] [CrossRef] - Ran, Q.; Zhou, Y.; Zou, Y.; Wang, J.; Duan, Z.; Sun, Z.; Fu, B.; Shixin, G. Molecular dynamics simulation of displacement cascades in cubic silicon carbide. Nucl. Mater. Energy
**2021**, 27, 100957. [Google Scholar] [CrossRef] - Kucal, E.; Czerski, K.; Koziol, Z. Molecular Dynamics Simulations of Primary Radiation Damage in Silicon Carbide. Acta Phys. Pol. A
**2022**, 142, 747–752. [Google Scholar] [CrossRef] - Wu, J.; Xu, Z.; Zhao, J.; Rommel, M.; Nordlund, K.; Ren, F.; Fang, F. MD simulation of two-temperature model in ion irradiation of 3C-SiC: Effects of electronic and nuclear stopping coupling, ion energy and crystal orientation. J. Nucl. Mater.
**2021**, 557, 153313. [Google Scholar] [CrossRef] - Al Smairat, S.; Graham, J. Vacancy-induced enhancement of electron–phonon coupling in cubic silicon carbide and its relationship to the two-temperature model. J. Appl. Phys.
**2021**, 130, 125902. [Google Scholar] [CrossRef]

**Figure 1.**SRIM calculation showing the nuclear and electronic energy loss as a function of ion energy ((

**a**) Si ion in SiC, (

**b**) C ion in SiC). The region where nuclear stopping power is significant is zoomed in and shown in the inset.

**Figure 2.**SRIM predicted damage dose (dpa) for the SiC samples irradiated with different energies of Si (

**a**,

**c**) and C (

**b**) ions (in Table 1—samples 1–16). Inset plots represent a region investigated by RBS/C analysis (highlighted in gray).

**Figure 3.**The radial distribution of energy after Si (

**a**) and C (

**b**) ion irradiation. Initial temperature of the SiC sample: 25 °C.

**Figure 4.**Temperature in the center of ion path as a function of electronic stopping power. Initial temperature of the SiC sample: 25 °C.

**Figure 5.**Evolution of the electronic and lattice temperatures as a function of time along the 21 MeV Si ion path. Radius is a distance from the center of the ion path. Initial temperature of the SiC sample: 25 °C.

**Figure 6.**The maximum temperature in the center of the ion path as a function of electron–phonon coupling.

**Figure 7.**RBS/C spectra for different 500 keV C irradiation conditions. The reference random spectrum is shown in (

**a**), and it is omitted in (

**b**) for the sake of clarity while the plot area in (

**b**) is also zoomed in. Blue dots denote irradiation at RT, whereas orange stars represent irradiation at HT. HT annealing (8 min) after RT irradiation is represented by aquamarine triangles and HT annealing (8 min) is represented by pink diamonds. RBS/C spectra for different 500 keV C irradiation conditions. The reference random spectrum is shown in (

**a**), and it is omitted in (

**b**) for the sake of clarity, while the plot area in (

**b**) is also zoomed in.

**Figure 8.**RBS/C spectra for the samples irradiated at room temperature (RT) and high temperatures (HT) using (

**a**) 21 MeV Si, (

**b**) 5 MeV Si, (

**c**) 0.5 MeV Si, (

**d**) 5 MeV C, (

**e**) 1 MeV C, and (

**f**) 0.5 MeV C ions, respectively.

**Figure 9.**The results for irradiation at RT using Si (

**a**,

**b**) and C (

**c**,

**d**) ions (0.01 dpa at the depth of 400 nm). On the left, RBS/C spectra (discrete plots) and spectra simulated by McChasy code (solid lines) are shown. The corresponding randomly displaced atoms determined by the McChasy simulations are on the right.

**Figure 10.**Results of irradiation performed with Si ions (0.05 dpa at the depth of 500 nm). (

**a**), RBS/C spectra (discrete plots) and spectra simulated by McChasy code (solid lines) are shown. The corresponding randomly displaced atoms determined by the McChasy simulations are (

**b**).

**Figure 11.**RBS/C spectra as discrete plots and channeling spectra fitted by McChasy code as solid lines (

**a**) and corresponding randomly displaced atoms (

**b**) for Si irradiation. The turquoise dotted stepline corresponds to the sum of RDA produced by 0.5 MeV Si and 21 MeV Si, separately.

Sample | Ion | Energy [MeV] | Fluence [${10}^{13}$cm ^{−2}] | Flux [${10}^{11}$s ^{−1}cm^{−2}] | Temperature [°C] |
---|---|---|---|---|---|

1 | Si | 21.0 | 100 | 1.60 | 25 |

2 | Si | 21.0 | 100 | 2.30 | 800 |

3 | Si | 5.0 | 25 | 0.63 | 25 |

4 | Si | 5.0 | 25 | 3.90 | 800 |

5 | Si | 0.5 | 2 | 0.50 | 25 |

6 | Si | 0.5 | 2 | 0.94 | 800 |

7 | C | 5.0 | 200 | 2.30 | 25 |

8 | C | 5.0 | 200 | 2.30 | 800 |

9 | C | 1.0 | 40 | 5.90 | 25 |

10 | C | 1.0 | 40 | 5.90 | 800 |

11 | C | 0.5 | 15 | 3.10 | 25 |

12 | C | 0.5 | 15 | 3.10 | 800 |

13 | Si | 21.0 | 450 | 1.60 | 25 |

14 | Si | 5.0 | 100 | 2.50 | 25 |

15 | Si | 0.5 | 15 | 3.30 | 25 |

16 ^{I} | Si | 0.5 | 15 | 3.10 | 25 |

16 ^{II} | Si | 21.0 | 100 | 1.60 | 25 |

^{I}), and subsequent irradiation with 21 MeV (16

^{II}).

**Table 2.**Temperatures and energies in the center of the ion trajectory calculated from inelastic thermal spike model. Initial temperature of the SiC sample: 25 °C.

Ion | Ion Energy [MeV] | Electronic Stopping Power [keV/Å] | Temperature [°C] | Energy per Atom [eV] |
---|---|---|---|---|

Si | 21.0 | 0.51 | 711 | 0.22 |

Si | 5.0 | 0.39 | 693 | 0.22 |

Si | 0.5 | 0.11 | 249 | 0.12 |

C | 5.0 | 0.18 | 278 | 0.12 |

C | 1.0 | 0.15 | 293 | 0.13 |

C | 0.5 | 0.11 | 242 | 0.12 |

**Table 3.**Temperatures and energies in the center of the ion trajectory calculated from inelastic thermal spike model. Initial temperature of the SiC sample: 800 °C.

Ion | Ion Energy [MeV] | Electronic Stopping Power [keV/Å] | Temperature [°C] | Energy per Atom [eV] |
---|---|---|---|---|

Si | 21.0 | 0.51 | 1554 | 0.48 |

Si | 5.0 | 0.39 | 1554 | 0.48 |

Si | 0.5 | 0.11 | 1076 | 0.35 |

C | 5.0 | 0.18 | 1103 | 0.36 |

C | 1.0 | 0.15 | 1124 | 0.36 |

C | 0.5 | 0.11 | 1066 | 0.35 |

Ion | Ion Energy [MeV] | Electronic Stopping Power [keV/Å] | Damage Dose [dpa] | Randomly Displaced Atoms [%] |
---|---|---|---|---|

Si | 21.0 | 0.51 | 0.01 | 2.2 |

Si | 5.0 | 0.35 | 0.01 | 2.4 |

Si | 0.5 | 0.80 | 0.01 | 2.0 |

Si | 21.0 | 0.51 | 0.05 | 3.5 |

Si | 5.0 | 0.35 | 0.05 | 6.8 |

Si | 0.5 | 0.80 | 0.05 | 7.0 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kucal, E.; Jóźwik, P.; Mieszczyński, C.; Heller, R.; Akhmadaliev, S.; Dufour, C.; Czerski, K.
Temperature Effects of Nuclear and Electronic Stopping Power on Si and C Radiation Damage in 3C-SiC. *Materials* **2024**, *17*, 2843.
https://doi.org/10.3390/ma17122843

**AMA Style**

Kucal E, Jóźwik P, Mieszczyński C, Heller R, Akhmadaliev S, Dufour C, Czerski K.
Temperature Effects of Nuclear and Electronic Stopping Power on Si and C Radiation Damage in 3C-SiC. *Materials*. 2024; 17(12):2843.
https://doi.org/10.3390/ma17122843

**Chicago/Turabian Style**

Kucal, Ewelina, Przemysław Jóźwik, Cyprian Mieszczyński, René Heller, Shavkat Akhmadaliev, Christian Dufour, and Konrad Czerski.
2024. "Temperature Effects of Nuclear and Electronic Stopping Power on Si and C Radiation Damage in 3C-SiC" *Materials* 17, no. 12: 2843.
https://doi.org/10.3390/ma17122843