The Non-Linear Elasticity of Unidirectional Continuous Carbon Fibre-Reinforced Composites and of Carbon Fibres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experiments
2.2. Data Analyses
3. Results
4. Discussion
4.1. Non-Linear Elastic Parameters of Carbon Fibres
4.2. Microstructure of Carbon Fibres
- (i)
- Selection of the different fibres UTS50 (SM), IM2C (IM) and HR40 (HM);
- (ii)
- (iii)
- Computation of the tensile modulus at 0.5% strain for each fibre via from Table 1;
- (iv)
- Determination of the mean orientation angle via Equation (4) and these tensile moduli at 0.5% strain;
- (v)
- Computation of the change in mean orientation angle.
4.3. Signature (or Trace) of a Carbon Fibre during Bending Tests
4.4. Insights from This Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CFRP | Carbon fibre-reinforced plastics |
| UD | Unidirectional lamina |
| SM | Standard-modulus carbon fibre |
| IM | Intermediate-modulus carbon fibre |
| HM | High-modulus carbon fibre |
| PAN | Polyacrylonitrile precursor |
| AFP | Automated fibre placement |
| HLU | Hand lay-up |
References
- Njuguna, J. (Ed.) Lightweight Composite Structures in Transport; Number 67 in Woodhead Publishing Series in Composites Science and Engineering; Elsevier Woodhead Publishing: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Argon, A. Fracture of Composites. In Treatise on Materials Science and Technology; Herman, H., Ed.; Academy Press: New York, NY, USA, 1972; Chapter 4; p. 345. [Google Scholar]
- Wisnom, M.R. On the high compressive strains achieved in bending test on unidirectional carbon-fibre/epoxy. Compos. Sci. Technol. 1992, 43, 229–235. [Google Scholar] [CrossRef]
- Vandreumel, W.H.M.; Kamp, J.L.M. Non-Hookean Behavior in Fiber Direction of Carbon-Fiber Composites and Influence of Fiber Waviness on Tensile Properties. J. Compos. Mater. 1977, 11, 461–469. [Google Scholar] [CrossRef]
- Wisnom, M.R. Limitations of Linear Elastic Bending Theory Applied to Four Point Bending of Unidirectional Carbon Fibre-Epoxy. In Proceedings of the 31st Structures, Structural Dynamics and Materials Conference, Reston, VA, USA, 2–4 April 1990. [Google Scholar] [CrossRef]
- Csanádi, T.; Németh, D.; Zhang, C.; Dusza, J. Nanoindentation derived elastic constants of carbon fibres and their nanostructural based predictions. Carbon 2017, 119, 314–325. [Google Scholar] [CrossRef]
- Guruprasad, T.; Keryvin, V.; Charleux, L.; Guin, J.P.; Arnould, O. On the determination of the elastic constants of carbon fibres by nanoindentation tests. Carbon 2021, 173, 572–586. [Google Scholar] [CrossRef]
- Curtis, G.J.; Milne, M.J.; Reynolds, W.N. Non-Hookean Behaviour of Strong Carbon Fibres. Nature 1968, 220, 1024–1025. [Google Scholar] [CrossRef]
- Hughes, J. Strength and modulus of current carbon fibres. Carbon 1986, 24, 551–556. [Google Scholar] [CrossRef]
- Shioya, M.; Hayakawa, E.; Takaku, A. Non-hookean stress-strain response and changes in crystallite orientation of carbon fibres. J. Mater. Sci. 1996, 31, 4521–4532. [Google Scholar] [CrossRef]
- Ueda, M.; Akiyama, M. Compression test of a single carbon fiber in a scanning electron microscope and its evaluation via finite element analysis. Adv. Compos. Mater. 2019, 28, 57–71. [Google Scholar] [CrossRef]
- Guruprasad, T.; Keryvin, V.; Kermouche, G.; Marthouret, Y.; Sao-Joao, S. Compressive behaviour of carbon fibres micropillars by in situ SEM nanocompression. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107699. [Google Scholar] [CrossRef]
- Keryvin, V.; Marchandise, A.; Grandidier, J.C. Non-linear elastic longitudinal behaviour of continuous carbon fibres/epoxy matrix composite laminae: Material or geometrical feature? Compos. Part B Eng. 2022, 247, 110329. [Google Scholar] [CrossRef]
- Keryvin, V.; Marchandise, A.; Mechin, P.Y.; Grandidier, J.C. Determination of the longitudinal non linear elastic behaviour and compressive strength of a {CFRP} ply by bending tests on laminates. Compos. Part B Eng. 2020, 187, 107863. [Google Scholar] [CrossRef]
- Keryvin, V.; Méchin, P.Y. Mast design performance—Influence of the non-linear elastic behaviour of carbon fibre composite plies on the accuracy of fluid/structure interaction models for estimating mast bending. In Proceedings of the High Performance Yacht Design Conference HPYD8, Auckland, New Zealand, 23–24 March 2024; pp. 1–13. [Google Scholar]
- Nakatani, M.; Shioya, M.; Yamashita, J. Axial compressive fracture of carbon fibers. Carbon 1999, 37, 601–608. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Kato, T.; Shioya, M.; Kobayashi, T.; Sumiya, K.; Fujie, M. Structure change of carbon fibers during axial compression. Carbon 2013, 57, 416–424. [Google Scholar] [CrossRef]
- Nunna, S.; Ravindran, A.R.; Mroszczok, J.; Creighton, C.; Varley, R.J. A review of the structural factors which control compression in carbon fibres and their composites. Compos. Struct. 2023, 303, 116293. [Google Scholar] [CrossRef]
- Kant, M.; Penumadu, D. Dynamic mechanical characterization for nonlinear behavior of single carbon fibers. Compos. Part A Appl. Sci. Manuf. 2014, 66, 201–208. [Google Scholar] [CrossRef]
- Allix, O.; Ladevèze, P.; Vittecoq, E. Modelling and identification of the mechanical behaviour of composite laminates in compression. Compos. Sci. Technol. 1994, 51, 35–42. [Google Scholar] [CrossRef]
- Montagnier, O. Compression Characterization of High-modulus Carbon Fibers. J. Compos. Mater. 2005, 39, 35–49. [Google Scholar] [CrossRef]
- Murphey, T.W.; Peterson, M.E.; Grigoriev, M.M. Large Strain Four-Point Bending of Thin Unidirectional Composites. J. Spacecr. Rockets 2015, 52, 882–895. [Google Scholar] [CrossRef]
- Devaux, H.; Balze, R.; Robert, S. Finite-element model of a rigid wing sail for a maxi trimaran. Mech. Ind. 2012, 13, 423–430. [Google Scholar] [CrossRef]
- Marchandise, A.; Keryvin, V.; Grohens, Y.; Borgne, R.L. Influence of the lay-up and curing steps in the manufacturing process of thick laminate composites on their compressive strength. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107302. [Google Scholar] [CrossRef]
- Mechin, P.; Keryvin, V.; Grandidier, J.; Glehen, D. An experimental protocol to measure the parameters affecting the compressive strength of CFRP with a fibre micro-buckling failure criterion. Compos. Struct. 2019, 211, 154–162. [Google Scholar] [CrossRef]
- Djordjević, I.M.; Sekulić, D.R.; Stevanović, M.M. Non-linear elastic behaviour of carbon fibres of different structural and mechanical characteristic. J. Serbian Chem. Soc. 2007, 72, 513–521. [Google Scholar] [CrossRef]
- Mujika, F.; Carbajal, N.; Arrese, A.; Mondragon, I. Determination of tensile and compressive moduli by flexural tests. Polym. Test. 2006, 25, 766–771. [Google Scholar] [CrossRef]
- Serna Moreno, M.C.; Romero Gutiérrez, A.; Martínez Vicente, J.L. Different response under tension and compression of unidirectional carbon fibre laminates in a three-point bending test. Compos. Struct. 2016, 136, 706–711. [Google Scholar] [CrossRef]
- Park, S.J. Carbon Fibres; Springer Nature: Singapore, 2018. [Google Scholar] [CrossRef]
- Paris, O.; Peterlik, H. Single Carbon Fibres: Structure from X-ray Diffraction and Nanomechanical Properties. In Structure and Multiscale Mechanics of Carbon Nanomaterials; Paris, O., Ed.; Springer: Vienna, Austria, 2016; pp. 1–28. [Google Scholar] [CrossRef]
- Loidl, D.; Paris, O.; Burghammer, M.; Riekel, C.; Peterlik, H. Direct Observation of Nanocrystallite Buckling in Carbon Fibers under Bending Load. Phys. Rev. Lett. 2005, 95, 225501. [Google Scholar] [CrossRef]
- Zhong, Y.; Bian, W. Analysis of the tensile moduli affected by microstructures among seven types of carbon fibers. Compos. Part B Eng. 2017, 110, 178–184. [Google Scholar] [CrossRef]
- Kobayashi, T.; Sumiya, K.; Fukuba, Y.; Fujie, M.; Takahagi, T.; Tashiro, K. Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements. Carbon 2011, 49, 1646–1652. [Google Scholar] [CrossRef]
- Chen, L.; Hao, L.; Liu, S.; Ding, G.; Sun, X.; Zhang, W.; Li, F.; Jiao, W.; Yang, F.; Xu, Z.; et al. Modulus distribution in polyacrylonitrile-based carbon fiber monofilaments. Carbon 2020, 157, 47–54. [Google Scholar] [CrossRef]
- Ozcan, S.; Vautard, F.; Naskar, A.K. Designing the Structure of Carbon Fibers for Optimal Mechanical Properties. In PolymER Precursor-Derived Carbon; ACS Publications: Washington, DC, USA, 2014; Chapter 10; pp. 215–232. [Google Scholar]
- Tanaka, F.; Okabe, T.; Okuda, H.; Ise, M.; Kinloch, I.A.; Mori, T.; Young, R.J. The effect of nanostructure upon the deformation micromechanics of carbon fibres. Carbon 2013, 52, 372–378. [Google Scholar] [CrossRef]










| Fibre | E | Matrix | Manuf. | ||||
|---|---|---|---|---|---|---|---|
| Name | [GPa] | Name | Process | [GPa] | [GPa] | [GPa/%] | [GPa/%] |
| UTS50 | 245 | RV101 | AFP | 165 ± 4 | 164 ± 3 | 22 ± 3 | 14 ± 3 |
| IMS65 | 290 | DT120 | HLU | 142 ± 2 | 139 ± 4 | 19 ± 6 | 21 ± 6 |
| IMS65 | 290 | BT080 | HLU | 135 ± 5 | 133 ± 3 | 22 ± 8 | 15 ± 3 |
| IMS65 | 290 | DT124 | HLU | 161 ± 5 | 157 ± 4 | 21 ± 8 | 24 ± 9 |
| T800S | 294 | MR074 | AFP | 152 ± 3 | 151 ± 3 | 14 ± 2 | 23 ± 1 |
| T800S | 294 | DT120 | HLU | 142 ± 4 | 139 ± 4 | 19 ± 6 | 21 ± 6 |
| T800S | 294 | DT124 | HLU | 149 ± 5 | 149 ± 7 | 21 ± 13 | 17 ± 8 |
| T800G | 294 | MR074 | AFP | 143 ± 4 | 143 ± 4 | 20 ± 3 | 8 ± 3 |
| IM2C | 296 | Se84LV | AFP | 162 ± 4 | 160 ± 3 | 21 ± 4 | 12 ± 5 |
| IM2C | 296 | Se84nano2 | HLU | 167 ± 3 | 163 ± 3 | 23 ± 11 | 14 ± 3 |
| IM2C | 296 | Se84nano2 | HLU | 175 ± 9 | 171 ± 9 | 23 ± 6 | 16 ± 11 |
| IM2C | 296 | M81 | AFP | 168 ± 5 | 166 ± 5 | 25 ± 6 | 14 ± 8 |
| IM2C | 296 | M79 | HLU | 164 ± 5 | 161 ± 5 | 23 ± 5 | 22 ± 4 |
| IM2C | 296 | R374-1 | HLU | 155 ± 7 | 153 ± 3 | 20 ± 8 | 14 ± 4 |
| HR40 | 390 | Se84nano2 | HLU | 213 ± 9 | 218 ± 6 | 55 ± 18 | 55 ± 10 |
| HR40 | 390 | Se84nano2 | HLU | 225 ± 5 | 224 ± 5 | 46 ± 11 | 50 ± 10 |
| HR40 | 390 | R374-1 | HLU | 193 ± 7 | 198 ± 4 | 42 ± 6 | 42 ± 4 |
| Fibre | E | ||
|---|---|---|---|
| Name | [GPa] | [−] | [−] |
| UTS50 | 245 | 13 ± 2 | 9 ± 2 |
| IMS65 | 290 | 13 ± 4 | 15 ± 4 |
| T800G | 294 | 14 ± 4 | 6 ± 4 |
| T800S | 294 | 12 ± 4 | 12 ± 4 |
| IM2C | 296 | 14 ± 2 | 8 ± 3 |
| HR40 | 390 | 23 ± 8 | 23 ± 5 |
| Fibre | Initial | Orientation | Change | ||
|---|---|---|---|---|---|
| Studied | Associated | Orientation | @0.5% Strain | in Angle | |
| [GPa] | [°] | [−] | [°] | [°] | |
| UTS50 | 245 | 15.2 | 13 | 14.4 | −0.8 |
| IM2C | 296 | 12.8 | 14 | 12.0 | −0.8 |
| HR40 | 390 | 9.6 | 23 | 8.3 | −1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keryvin, V.; Marchandise, A. The Non-Linear Elasticity of Unidirectional Continuous Carbon Fibre-Reinforced Composites and of Carbon Fibres. Materials 2024, 17, 34. https://doi.org/10.3390/ma17010034
Keryvin V, Marchandise A. The Non-Linear Elasticity of Unidirectional Continuous Carbon Fibre-Reinforced Composites and of Carbon Fibres. Materials. 2024; 17(1):34. https://doi.org/10.3390/ma17010034
Chicago/Turabian StyleKeryvin, Vincent, and Adrien Marchandise. 2024. "The Non-Linear Elasticity of Unidirectional Continuous Carbon Fibre-Reinforced Composites and of Carbon Fibres" Materials 17, no. 1: 34. https://doi.org/10.3390/ma17010034
APA StyleKeryvin, V., & Marchandise, A. (2024). The Non-Linear Elasticity of Unidirectional Continuous Carbon Fibre-Reinforced Composites and of Carbon Fibres. Materials, 17(1), 34. https://doi.org/10.3390/ma17010034

