CoFe2O4@HaP as Magnetic Heterostructures for Sustainable Wastewater Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis
2.3. Characterization Methods and Equipment
2.4. Dye Adsorption Experiments
3. Results
3.1. Powder X-ray Diffraction Analysis (XRD)
- D = crystallite size (nm);
- K = constant dependent on the shape of the crystallite (0.89) (dimensionless);
- λ = wavelength of X-rays (nm)
- B = FWDHM (Full Width at Half Maximum) (degree)
- θB = Bragg angle (degree).
3.2. FT-IR Spectroscopy
3.3. Magnetic Properties
3.4. BET Analysis (Brunauer–Emmett–Teller)
3.5. Adsorption Studies
3.6. Evaluation of Reuse of CoFe2O4@HaP Composite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules 2021, 26, 5419. [Google Scholar] [CrossRef]
- Soltani, A.; Faramarzi, M.; Mousavi Parsa, S.A. A Review on Adsorbent Parameters for Removal of Dye Products from Industrial Wastewater. Water Qual. Res. J. 2021, 56, 181–193. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Mahmud, H.N.M.E.; Abdullahi, S.S.; Habibu, S.; Jagaba, A.H.; Ibrahim, M.N.M.; Ahmad, A.; Alshammari, M.B.; Parveen, T.; Umar, K. Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers 2022, 14, 3362. [Google Scholar] [CrossRef]
- Al-Mahbashi, N.M.Y.; Kutty, S.R.M.; Bilad, M.R.; Huda, N.; Kobun, R.; Noor, A.; Jagaba, A.H.; Al-Nini, A.; Ghaleb, A.A.S.; Al-dhawi, B.N.S. Bench-Scale Fixed-Bed Column Study for the Removal of Dye-Contaminated Effluent Using Sewage-Sludge-Based Biochar. Sustainability 2022, 14, 6484. [Google Scholar] [CrossRef]
- Al-dhawi, B.N.S.; Kutty, S.R.M.; Hayder, G.; Elnaim, B.M.E.; Mnzool, M.; Noor, A.; Saeed, A.A.H.; Al-Mahbashi, N.M.Y.; Al-Nini, A.; Jagaba, A.H. Adsorptive Removal of Boron by DIAIONTM CRB05: Characterization, Kinetics, Isotherm, and Optimization by Response Surface Methodology. Processes 2023, 11, 453. [Google Scholar] [CrossRef]
- Liu, Q. Pollution and Treatment of Dye Waste-Water. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 052001. [Google Scholar] [CrossRef]
- Nikfar, S.; Jaberidoost, M. Dyes and Colorants. Encycl. Toxicol. 2014, 252–261. [Google Scholar] [CrossRef]
- Khezami, L.; Taha, K.K.; OuldM’hamed, M.; Lemine, O.M. (X)ZnO(1 − X)Fe2O3 Nanocrystallines for the Removal of Cadmium(II) and Nickel(II) from Water: Kinetic and Adsorption Studies. J. Water Supply Res. Technol.-AQUA 2017, 66, 381–391. [Google Scholar] [CrossRef]
- Alamrani, N.A.; AL-Aoh, H.A. Elimination of Congo Red Dye from Industrial Wastewater Using Teucrium Polium L. As a Low-Cost Local Adsorbent. Adsorpt. Sci. Technol. 2021, 2021, 5728696. [Google Scholar] [CrossRef]
- Setyawati, H.; Darmokoesoemo, H.; Murwani, I.K.; Permana, A.J.; Rochman, F. Functionalization of Congo Red Dye as a Light Harvester on Solar Cell. Open Chem. 2020, 18, 287–294. [Google Scholar] [CrossRef]
- Yakupova, E.I.; Bobyleva, L.G.; Vikhlyantsev, I.M.; Bobylev, A.G. Congo Red and Amyloids: History and Relationship. Biosci. Rep. 2018, 39, BSR20181415. [Google Scholar] [CrossRef]
- Ozmen, M.; Can, K.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Adsorption of Cu(II) from Aqueous Solution by Using Modified Fe3O4 Magnetic Nanoparticles. Desalination 2010, 254, 162–169. [Google Scholar] [CrossRef]
- Kuncser, V.; Chipara, D.; Martirosyan, K.S.; Schinteie, G.A.; Ibrahim, E.; Chipara, M. Magnetic Properties and Thermal Stability of Polyvinylidene Fluoride—Fe2O3 Nanocomposites. J. Mater. Res. 2020, 35, 132–140. [Google Scholar] [CrossRef]
- Karthi, S.; Kumar, G.A.; Sardar, D.K.; Dannangoda, G.C.; Martirosyan, K.S.; Girija, E.K. Fluorapatite Coated Iron Oxide Nanostructure for Biomedical Applications. Mater. Chem. Phys. 2017, 193, 356–363. [Google Scholar] [CrossRef]
- Biedrzycka, A.; Skwarek, E.; Osypiuk, D.; Cristóvao, B. Synthesis of Hydroxyapatite/Iron Oxide Composite and Comparison of Selected Structural, Surface, and Electrochemical Properties. Materials 2022, 15, 1139. [Google Scholar] [CrossRef]
- Das, K.C.; Dhar, S.S. Remarkable Catalytic Degradation of Malachite Green by Zinc Supported on Hydroxyapatite Encapsulated Magnesium Ferrite (Zn/HAP/MgFe2O4) Magnetic Novel Nanocomposite. J. Mater. Sci. 2019, 55, 4592–4606. [Google Scholar] [CrossRef]
- Das, K.C.; Dhar, S.S. Removal of Cadmium(II) from Aqueous Solution by Hydroxyapatite-Encapsulated Zinc Ferrite (HAP/ZnFe2O4) Nanocomposite: Kinetics and Isotherm Study. Environ. Sci. Pollut. Res. 2020, 27, 37977–37988. [Google Scholar] [CrossRef]
- Iram, M.; Guo, C.; Guan, Y.; Ishfaq, A.; Liu, H. Adsorption and Magnetic Removal of Neutral Red Dye from Aqueous Solution Using Fe3O4 Hollow Nanospheres. J. Hazard. Mater. 2010, 181, 1039–1050. [Google Scholar] [CrossRef]
- Gong, R.; Li, M.; Yang, C.; Sun, Y.; Chen, J. Removal of Cationic Dyes from Aqueous Solution by Adsorption on Peanut Hull. J. Hazard. Mater. 2005, 121, 247–250. [Google Scholar] [CrossRef]
- Gherca, D.; Pui, A.; Nica, V.; Caltun, O.; Cornei, N. Eco-Environmental Synthesis and Characterization of Nanophase Powders of Co, Mg, Mn and Ni Ferrites. Ceram. Int. 2014, 40, 9599–9607. [Google Scholar] [CrossRef]
- Gherca, D.; Pui, A.; Cornei, N.; Cojocariu, A.; Nica, V.; Caltun, O. Synthesis, Characterization and Magnetic Properties of MFe2O4 (M=Co, Mg, Mn, Ni) Nanoparticles Using Ricin Oil as Capping Agent. J. Magn. Magn. Mater. 2012, 324, 3906–3911. [Google Scholar] [CrossRef]
- Kivrak, N.; Taş, A.C. Synthesis of Calcium Hydroxyapatite-Tricalcium Phosphate (HA-TCP) Composite Bioceramic Powders and Their Sintering Behavior. J. Am. Ceram. Soc. 2005, 81, 2245–2252. [Google Scholar] [CrossRef]
- Hargreaves, J.S.J. Some Considerations Related to the Use of the Scherrer Equation in Powder X-Ray Diffraction as Applied to Heterogeneous Catalysts. Catal. Struct. React. 2016, 2, 33–37. [Google Scholar] [CrossRef]
- Malinowska, I.; Ryżyńska, Z.; Mrotek, E.; Klimczuk, T.; Zielińska-Jurek, A. Synthesis of CoFe2O4 Nanoparticles: The Effect of Ionic Strength, Concentration, and Precursor Type on Morphology and Magnetic Properties. J. Nanomater. 2020, 2020, 9046219. [Google Scholar] [CrossRef]
- Cahyaningrum, S.E.; Herdyastuty, N.; Devina, B.; Supangat, D. Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 012039. [Google Scholar] [CrossRef]
- Aval, N.A. Mesoporous Materials in Drug Delivery. J. Nanomed. Res. 2016, 4, 1–6. [Google Scholar] [CrossRef]
- Selima, S.S.; Bayoumy, W.A.; Khairy, M.; Mousa, M.A. Structural, Magnetic, Optical Properties and Photocatalytic Activity of Nanocrystalline Cobalt Ferrite Prepared by Three Different Methods. Biointerface Res. Appl. Chem. 2021, 12, 1335–1351. [Google Scholar] [CrossRef]
- Chakraverty, S.; Bandyopadhyay, M. Coercivity of Magnetic Nanoparticles: A Stochastic Model. J. Phys. Condens. Matter 2007, 19, 216201. [Google Scholar] [CrossRef]
- Thommes, M. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Chem. Int. 2016, 38, 25. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Y.; Wang, M.; Chen, B.; Zhang, Y.; Sun, Y.; Chen, K.; Du, Q.; Jing, Z.; Jin, Y. Preparation of MIL-88A Micro/Nanocrystals with Different Morphologies in Different Solvents for Efficient Removal of Congo Red from Water: Synthesis, Characterization, and Adsorption Mechanisms. Microporous Mesoporous Mater. 2022, 345, 112241. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, B.; Jiang, X.; Ji, Y. Dual Function Magnetic Hydroxyapatite Nanopowder for Removal of Malachite Green and Congo Red from Aqueous Solution. Powder Technol. 2016, 302, 207–214. [Google Scholar] [CrossRef]
- Piri, F.; Mollahosseini, A.; Khadir, A.; Milani Hosseini, M. Enhanced Adsorption of Dyes on Microwave-Assisted Synthesized Magnetic Zeolite-Hydroxyapatite Nanocomposite. J. Environ. Chem. Eng. 2019, 7, 103338. [Google Scholar] [CrossRef]
- Bensalah, H.; Younssi, S.A.; Ouammou, M.; Gurlo, A.; Bekheet, M.F. Azo Dye Adsorption on an Industrial Waste-Transformed Hydroxyapatite Adsorbent: Kinetics, Isotherms, Mechanism and Regeneration Studies. J. Environ. Chem. Eng. 2020, 8, 103807. [Google Scholar] [CrossRef]
- Chahkandi, M. Mechanism of Congo Red Adsorption on New Sol-Gel-Derived Hydroxyapatite Nano-Particle. Mater. Chem. Phys. 2017, 202, 340–351. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Karthikeyan, P.; Ramkumar, K.; Meenakshi, S. Effective Removal of Organic Pollutants by Adsorption onto Chitosan Supported Graphene Oxide-Hydroxyapatite Composite: A Novel Reusable Adsorbent. J. Mol. Liq. 2020, 318, 114200. [Google Scholar] [CrossRef]
- Azeez, L.; Adebisi, S.A.; Adejumo, A.L.; Busari, H.K.; Aremu, H.K.; Olabode, O.A.; Awolola, O. Adsorptive Properties of Rod-Shaped Silver Nanoparticles-Functionalized Biogenic Hydroxyapatite for Remediating Methylene Blue and Congo Red. Inorg. Chem. Commun. 2022, 142, 109655. [Google Scholar] [CrossRef]
- Nguyen, L.M.; Nguyen, N.T.T.; Nguyen, T.T.T.; Nguyen, D.H.; Nguyen, D.T.C.; Tran, T.V. Facile Synthesis of CoFe2O4@MIL–53(Al) Nanocomposite for Fast Dye Removal: Adsorption Models, Optimization and Recyclability. Environ. Res. 2022, 215, 114269. [Google Scholar] [CrossRef]
- Simonescu, C.M.; Tătăruş, A.; Culiţă, D.C.; Stănică, N.; Ionescu, I.A.; Butoi, B.; Banici, A.-M. Comparative Study of CoFe2O4 Nanoparticles and CoFe2O4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption. Nanomaterials 2021, 11, 711. [Google Scholar] [CrossRef]
- Ciesielczyk, F.; Żółtowska-Aksamitowska, S.; Jankowska, K.; Zembrzuska, J.; Zdarta, J.; Jesionowski, T. The Role of Novel Lignosulfonate-Based Sorbent in a Sorption Mechanism of Active Pharmaceutical Ingredient: Batch Adsorption Tests and Interaction Study. Adsorption 2019, 25, 865–880. [Google Scholar] [CrossRef]
- Pehlivan, M.; Simsek, S.; Ozbek, S.; Ozbek, B. An Optimization Study on Adsorption of Reactive Blue 19 Dye from Aqueous Solutions by Extremely Effective and Reusable Novel Magnetic Nanoadsorbent. Desalination Water Treat. 2020, 191, 438–451. [Google Scholar] [CrossRef]
- Peng, Q.; Yu, F.; Huang, B.; Huang, Y. Carbon-Containing Bone Hydroxyapatite Obtained from Tuna Fish Bone with High Adsorption Performance for Congo Red. RSC Adv. 2017, 7, 26968–26973. [Google Scholar] [CrossRef]
- Rao, R.; Huang, Y.; Ling, Q.; Hu, C.; Dong, X.; Xiang, J.; Zhou, Q.; Fang, S.; Hu, Y.; Zhang, Y.; et al. A Facile Pyrolysis Synthesis of Ni Doped Ce2O3@CeO2/CN Composites for Adsorption Removal of Congo Red: Activation of Carbon Nitride Structure. Sep. Purif. Technol. 2023, 305, 122505. [Google Scholar] [CrossRef]
- Cordova Estrada, A.K.; Cordova Lozano, F.; Lara Díaz, R.A. Thermodynamics and Kinetic Studies for the Adsorption Process of Methyl Orange by Magnetic Activated Carbons. Air Soil Water Res. 2021, 14, 117862212110133. [Google Scholar] [CrossRef]
- Babakir, B.; Abd Ali, L.I.; Ismail, H.K. Rapid Removal of Anionic Organic Dye from Contaminated Water Using a Poly(3-Aminobenzoic Acid/Graphene Oxide/Cobalt Ferrite) Nanocomposite Low-Cost Adsorbent via Adsorption Techniques. Arab. J. Chem. 2022, 15, 104318. [Google Scholar] [CrossRef]
No. | Sample | Crystallite Size (nm) |
---|---|---|
1 | CoFe2O4 | 44.46 |
2 | Hydroxyapatite (HaP) | 38.19 |
3 | CoFe2O4@HaP | 57.88 |
No. | Sample | a (Å) | V (Å3) | ρXRD (g/cm3) | Database |
---|---|---|---|---|---|
1 | Hydroxyapatite (HaP) | 9.4350 | 529.24 | 3.00 | ICSD [98-009-4268] |
2 | CoFe2O4@HaP | 8.3860 | 589.75 | 5.29 | ICSD [98-007-9523] |
3 | CoFe2O4 | 8.3810 | 588.69 | 5.29 | ICSD [98-007-9524] |
No. | Sample | Mr (emu/g) | Ms (emu/g) | Hc (kOe) | Mr/Ms |
---|---|---|---|---|---|
1 | CoFe2O4 | 40.26 | 69.22 | 0.1 | 0.58 |
2 | CoFe2O4@HaP | 7.26 | 34.83 | 0.03 | 0.2 |
No. | Sample | Specific Surface Area (m2/g) SBET | Total Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|---|
1 | CoFe2O4 | 15 | 0.17 | 9 |
2 | Hydroxyapatite (HaP) | 55 | 0.12 | 9 |
3 | CoFe2O4@HaP | 34 | 0.07 | 9 |
Kinetic Model | Equation | Results |
---|---|---|
Pseudo-first-order kinetic model | = 0.0672 R2 = 0.399 | |
Pseudo-second-order kinetic model, Type 1 | qe cal = 15.45 = 0.0725 R2 = 0.9996 | |
Pseudo-second-order kinetic model, Type 2 | qe cal = 16.13 = 0.0280 R2 = 0.8308 | |
Pseudo-second-order kinetic model, Type 3 | qe cal = 15.92 = 0.0434 R2 = 0.6829 | |
Pseudo-second-order kinetic model, Type 4 | qe cal = 16.59 = 0.0218 R2 = 0.6914 | |
Intraparticle diffusion model, Stage 1 | Stage 1: = 4.352 = 0.7516 R2 = 0.8467 | |
Stage 2: = 0.0222 = 15.022 R2 = 0.349 |
∆G° (kJ·mol−1) | ∆H° (kJ·mol−1) | ∆S° (kJ·mol−1·K−1) | ||
---|---|---|---|---|
296 K | 307 K | 319 K | ||
−30.71 | −31.85 | −33.09 | 31.76 | 103.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dănilă, R.-Ș.; Dumitru, I.; Ignat, M.; Pui, A. CoFe2O4@HaP as Magnetic Heterostructures for Sustainable Wastewater Treatment. Materials 2023, 16, 2594. https://doi.org/10.3390/ma16072594
Dănilă R-Ș, Dumitru I, Ignat M, Pui A. CoFe2O4@HaP as Magnetic Heterostructures for Sustainable Wastewater Treatment. Materials. 2023; 16(7):2594. https://doi.org/10.3390/ma16072594
Chicago/Turabian StyleDănilă, Raluca-Ștefania, Ioan Dumitru, Maria Ignat, and Aurel Pui. 2023. "CoFe2O4@HaP as Magnetic Heterostructures for Sustainable Wastewater Treatment" Materials 16, no. 7: 2594. https://doi.org/10.3390/ma16072594
APA StyleDănilă, R.-Ș., Dumitru, I., Ignat, M., & Pui, A. (2023). CoFe2O4@HaP as Magnetic Heterostructures for Sustainable Wastewater Treatment. Materials, 16(7), 2594. https://doi.org/10.3390/ma16072594