Effect of Graphitization Degree of Mesocarbon Microbeads (MCMBs) on the Microstructure and Properties of MCMB-SiC Composites
Abstract
1. Introduction
2. Experimental
2.1. Starting Materials and Methods
2.2. Characterizations
3. Results and Discussion
3.1. Graphitization Degree of Two MCMBs
3.2. Microstructure and Mechanical Properties of MCMB-SiC Composites
3.3. Dry friction Properties of MCMB-SiC Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katoh, Y.; Snead, L.L.; Szlufarska, I.; Weber, W.J. Radiation effects in SiC for nuclear structural applications. Curr. Opin. Solid State Mater. Sci. 2012, 16, 143–152. [Google Scholar] [CrossRef]
- Li, M.; Zhou, X.; Yang, H.; Du, S.; Huang, Q. The critical issues of SiC materials for future nuclear systems. Scr. Mater. 2018, 143, 149–153. [Google Scholar] [CrossRef]
- Zhou, X.; Jing, L.; Kwon, Y.D.; Kim, J.-Y.; Huang, Z.; Yoon, D.-H.; Lee, J.; Huang, Q. Fabrication of SiCw/Ti3SiC2 composites with improved thermal conductivity and mechanical properties using spark plasma sintering. J. Adv. Ceram. 2020, 9, 462–470. [Google Scholar] [CrossRef]
- Rafi, J.M.; Pellegrini, G.; Godignon, P.; Ugobono, S.O.; Rius, G.; Tsunoda, I.; Yoneoka, M.; Takakura, K.; Kramberger, G.; Moll, M. Electron, neutron and proton irradiation effects on SiC radiation detectors. IEEE Trans. Nucl. Sci. 2020, 67, 2481–2489. [Google Scholar] [CrossRef]
- Petrie, C.M.; Schrell, A.; Leonard, D.; Yang, Y.; Jolly, B.C.; Terrani, K.A. Emb e dde d sensors in additively manufactured silicon carbide. J. Nucl. Mater. 2021, 552, 153012. [Google Scholar] [CrossRef]
- Gao, C.; Yao, M.; Shuai, C.; Peng, S.; Deng, Y. Nano-SiC reinforced Zn biocomposites prepared via laser melting: Microstructure, mechanical properties and biodegradability. J. Mater. Sci. Technol. 2019, 35, 2608–2617. [Google Scholar] [CrossRef]
- Liu, L.Y.; Shen, T.; Liu, A.; Zhang, T.; Bai, S.; Xu, S.; Jin, P.; Hao, Y.; Ouyang, X. Performance degradation and defect characterization of Ni/4H-SiC Schottky diode neutron detector in high fluence rate neutron irradiation. Diam. Relat. Mater. 2018, 88, 256–261. [Google Scholar] [CrossRef]
- Liang, H.; Yao, X.; Zhang, H.; Liu, X.; Huang, Z. Friction and wear behavior of pressureless liquid phase sintered SiC. Mater. Des. 2015, 65, 370–376. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Niu, L.; Sun, W. Wear performance of SiC/G coating at elevated temperatures. Ceram. Int. 2014, 40, 1165–1170. [Google Scholar] [CrossRef]
- Guo, X.Z.; Cai, X.B.; Zhang, L.J.; Yang, H. Sintering, properties and microstructure of low friction SiC ceramic seals containing graphite fluoride. Adv. Appl. Ceram. 2013, 112, 341–344. [Google Scholar] [CrossRef]
- Zhou, Y.; Hirao, K.; Yamaguchi, T.; Hokkirigawa, K. Hokkirigawa. Preparation and tribological properties of SiC/rice bran carbon composite ceramics. J. Mater. Res. 2005, 20, 3439–3448. [Google Scholar] [CrossRef]
- Džunda, R.; Fides, M.; Hnatko, M.; Hvizdoš, P.; Múdra, E.; Medveď, D.; Kovalčíková, A.; Milkovič, O. Mechanical, physical properties and tribological behaviour of silicon carbide composites with addition of carbon nanotubes. Int. J. Refract. Met. Hard Mater. 2019, 81, 272–280. [Google Scholar] [CrossRef]
- Miyake, K.; Kusunoki, M.; Usami, H.; Umehara, N.; Sasaki, S. Tribological properties of densely packed vertically aligned carbon nanotube film on SiC formed by surface decomposition. Nano Lett. 2007, 7, 3285–3289. [Google Scholar] [CrossRef]
- Lyu, Y.; Tang, H.; Wang, P. Tribological properties of carbon fiber toughened SiC prepared by hot pressing sintering. Ceram. Int. 2019, 45, 832–838. [Google Scholar] [CrossRef]
- Wei, J.; Lin, B.; Wang, H.; Sui, T.; Yan, S.; Zhao, F.; Wang, A.; Fang, S. Friction and wear characteristics of carbon fiber reinforced silicon carbide ceramic matrix (Cf/SiC) composite and zirconia (ZrO2) ceramic under dry condition. Tribol. Int. 2018, 119, 45–54. [Google Scholar] [CrossRef]
- Agarwal, S.; Sarkar, S.; Das, M.; Dixit, A.R. Tribo-mechanical characterization of spark plasma sintered chopped carbon fibre reinforced silicon carbide composites. Ceram. Int. 2016, 42, 18283–18288. [Google Scholar] [CrossRef]
- Borrell, A.; Torrecillas, R.; Rocha, V.; Fernández, A.; Bonache, V.; Salvador, M. Effect of CNFs content on the tribological behaviour of spark plasma sintering ceramic–CNFs composites. Wear 2012, 274–275, 94–99. [Google Scholar] [CrossRef]
- Guo, X.; Wang, R.; Zheng, P.; Lu, Z.; Yang, H. Pressureless sintering of multilayer graphene reinforced silicon carbide ceramics for mechanical seals. Adv. Appl. Ceram. 2019, 118, 409–417. [Google Scholar] [CrossRef]
- Belmonte, M.; Nistal, A.; Boutbien, P.; Román-Manso, B.; Osendi, M.I.; Miranzo, P. Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers. Scr. Mater. 2016, 113, 127–130. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Gong, H.; Sun, H.; Li, T.; Guo, X.; Ai, S. Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics. Ceram. Int. 2015, 41, 13547–13552. [Google Scholar] [CrossRef]
- Llorente, J.; Román-Manso, B.; Miranzo, P.; Belmonte, M. Tribological performance under dry sliding conditions of graphene/silicon carbide composites. J. Eur. Ceram. Soc. 2016, 36, 429–435. [Google Scholar] [CrossRef]
- Llorente, J.; Belmonte, M. Friction and wear behaviour of silicon carbide/graphene composites under isooctane lubrication. J. Eur. Ceram. Soc. 2018, 38, 3441–3446. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, W.; Xie, X.; Tang, D.; Liu, C.; Yang, Q.-H. Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 2013, 62, 11–24. [Google Scholar] [CrossRef]
- Shimoda, K.; Hinoki, T.; Kohyama, A. Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/SiC nanocomposites. Compos. Sci. Technol. 2010, 70, 387–392. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, S. 2D nanomaterials as lubricant additive: A review. Mater. Des. 2017, 135, 319–332. [Google Scholar] [CrossRef]
- Wang, D.; Li, L.; Zhang, Z.; Liu, J.; Guo, X.; Mao, C.; Peng, H.; Li, Z.; Li, G. Mechanistic Insights into the Intercalation and Interfacial Chemistry of Mesocarbon Microbeads Anode for Potassium Ion Batteries. Small 2021, 17, e2103557. [Google Scholar] [CrossRef]
- Shen, K.; Huang, Z.-H.; Shen, W.; Yang, J.; Yang, G.; Yu, S.; Kang, F. Homogenous and highly isotropic graphite produced from mesocarbon microbeads. Carbon 2015, 94, 18–26. [Google Scholar] [CrossRef]
- Zou, Z.; Jiang, C. Nitrogen-doped amorphous carbon coated mesocarbon microbeads as excellent high rate Li storage anode materials. J. Mater. Sci. Technol. 2019, 35, 644–650. [Google Scholar] [CrossRef]
- Gong, X.; Guo, S.; Ding, Y.; Lou, B.; Shi, N.; Wen, F.; Yang, X.; Li, G.; Wu, B.; Zhu, W.; et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by co-carbonization of FCC decant oil and conductive carbon black. Fuel Process. Technol. 2022, 227, 107110. [Google Scholar] [CrossRef]
- Safi, S.; Kazemzadeh, A. MCMB–SiC composites; new class high-temperature structural materials for aerospace applications. Ceram. Int. 2013, 39, 81–86. [Google Scholar] [CrossRef]
- Safi, S.; Rad, R.Y. In situ synthesis of nano size silicon carbide and fabrication of C–SiC composites during the siliconization process of mesocarbon microbeads preforms. Ceram. Int. 2012, 38, 5081–5087. [Google Scholar] [CrossRef]
- Wang, X.; Yao, X.; Zhang, H.; Liu, X.; Huang, Z. Microstructure and Tribological Performance of Mesocarbon Microbead–Silicon Carbide Composites. Materials 2019, 12, 3127. [Google Scholar] [CrossRef]
- Wang, X.; Yao, X.; Zhang, H.; Liu, X.; Huang, Z. Tribological properties and wear mechanisms of hot-pressed sintering mesocarbon microbeads (MCMBs)-SiC composites against different counterparts. Ceram. Int. 2020, 46, 3896–3903. [Google Scholar] [CrossRef]
- Gong, X.; Lou, B.; Yu, R.; Zhang, Z.; Guo, S.; Li, G.; Wu, B.; Liu, D. Carbonization of mesocarbon microbeads prepared from mesophase pitch with different anisotropic contents and their application in lithium-ion batteries. Fuel Process. Technol. 2021, 217, 106832. [Google Scholar] [CrossRef]
- Wang, J.; Kong, L.; Bai, J.; Li, H.; Bai, Z.; Li, X.; Li, W. The role of residual char on ash flow behavior, Part 1: The effect of graphitization degree of residual char on ash fusibility. Fuel 2018, 134, 1173–1180. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Xiao, J.; Mao, Q.-Y.; Zhang, Z.-H.; Tang, L.; Zhong, Q.-F. Zhong. Recycling of waste carbon residue from spent lithium-ion batteries via constant-pressure acid leaching. Trans. Nonferrous Met. Soc. China 2022, 32, 1691–1704. [Google Scholar] [CrossRef]
- Zhang, W.; Yamashita, S.; Kita, H. Tribological properties of SiC-B4C ceramics under dry sliding condition. J. Eur. Ceram. Soc. 2020, 40, 2855–2861. [Google Scholar] [CrossRef]
- Gao, Y.; Song, H.; Chen, X. Self-sinterability of mesocarbon microbeads (MCMB) for preparation of high-density isotropic carbon. J. Mater. Sci. 2003, 38, 2209–2213. [Google Scholar] [CrossRef]
- Martínez-Escandell, M.; Carreira, P.; Rodríguez-Valero, M.A.; Rodríguez-Reinoso, F. Self-sintering of carbon mesophase powders: Effect of extraction/washing with solvents. Carbon 1999, 37, 1662–1665. [Google Scholar] [CrossRef]
- Yao, X.; Wang, X.; Liu, X.; Huang, Z. Densification of MCMB–SiC composites via two-step hot pressing. Ceram. Int. 2021, 47, 12342–12347. [Google Scholar] [CrossRef]
- Norfolk, C.; Kaufmann, A.; Mukasyan, A.; Varma, A. Processing of mesocarbon microbeads to high-performance. Carbon 2006, 44, 301–306. [Google Scholar] [CrossRef]
- Jeong, H.-K.; Noh, H.-J.; Kim, J.-Y.; Jin, M.H.; Park, C.Y.; Lee, Y.H. X-ray absorption spectroscopy of graphite oxide. EPL Europhys. Lett. 2008, 82, 67004. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Hsieh, C.-C.; Liu, W.-R. Synthesis of double core-shell carbon/silicon/graphite composite anode materials for lithium-ion batteries. Surf. Coat. Technol. 2020, 387, 125528. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Li, F.H.; Chi, W.D.; Shen, Z.M.; Wu, Y.X.; Liu, Y.F.; Liu, H. Activation of mesocarbon microbeads with different textures and their application for supercapacitor. Fuel Process. Technol. 2010, 91, 17–24. [Google Scholar]
- Phani, K.K.; Niyogi, S. Elastic Modulus-Porosity Relation in Polycry stalline Rare-Earth Oxides. J. Am. Ceram. Soc. 1998, 70, C362–C366. [Google Scholar]
- Park, J.G.; Keum, D.H.; Lee, Y.H. Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 2015, 95, 690–698. [Google Scholar] [CrossRef]
- Shu, R.; Jiang, X.; Li, J.; Shao, Z.; Zhu, D.; Song, T.; Luo, Z. Microstructures and mechanical properties of Al-Si alloy nanocomposites hybrid reinforced with nano-carbon and in-situ Al2OJ. Alloy. Compd. 2019, 800, 150–162. [Google Scholar] [CrossRef]
- Leinonen, T. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact. J. Vib. Acoust. 1994, 116, 404. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Song, J.; Hu, L. Tribological behavior and lubrication mechanism of self-lubricating ceramic/metal composites: The effect of matrix type on the friction and wear properties. Wear 2017, 372–373, 130–138. [Google Scholar] [CrossRef]
- Takadoum, J.; Zsiga, Z.; Ben Rhouma, M.; Roques-Carmes, C. Correlation between friction coefficient and wear mechanism of SiC/SiC system. J. Mater. Sci. Lett. 1994, 13, 474–476. [Google Scholar] [CrossRef]
- Scharf, T.W.; Prasad, S.V. Solid lubricants: A review. J. Mater. Sci. 2013, 48, 511–531. [Google Scholar] [CrossRef]
- Mogonye, J.E.; Srivastava, A.; Gopagoni, S.; Banerjee, R.; Scharf, T.W. Solid/Self-Lubrication Mechanisms of an Additively Manufactured Ni–Ti–C Metal Matrix Composite. Tribol. Lett. 2016, 64, 37. [Google Scholar] [CrossRef]
Material | D50 (μm) | Carbon Content (wt.%) | True Density (g/cm3) | Specific Surface Area (m2/g) |
---|---|---|---|---|
Raw MCMBs | 10 | ≥99.9 | ≥2.2 | 1.2–2.2 |
Mature MCMBs | 10 | ≥99.9 | ≥2.2 | ≤5 |
Material | Relative Density (%) | Hardness (GPa) | Flexural Strength (MPa) | Elastic Modulus (GPa) | Fracture Toughness (MPa·m1/2) |
---|---|---|---|---|---|
R-MS | 98.1 ± 0.1 | 5.35 ± 0.43 | 295 ± 22 | 174 ± 5 | 5.13 ± 0.27 |
M-MS | 97.3 ± 0.5 | 4.93 ± 0.44 | 287 ± 20 | 160 ± 3 | 4.32 ± 0.13 |
Material | Average Coefficient of Friction | Average Wear Volume (mm3) | Wear Rate (mm3·N−1·m−1) |
---|---|---|---|
R-MS | 0.44 | 0.06 | 7.7 × 10−7 |
M-MS | 0.35 | 0.20 | 2.66 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Yao, X.; Bai, J.; Huang, Z.; Liu, X. Effect of Graphitization Degree of Mesocarbon Microbeads (MCMBs) on the Microstructure and Properties of MCMB-SiC Composites. Materials 2023, 16, 541. https://doi.org/10.3390/ma16020541
Huang S, Yao X, Bai J, Huang Z, Liu X. Effect of Graphitization Degree of Mesocarbon Microbeads (MCMBs) on the Microstructure and Properties of MCMB-SiC Composites. Materials. 2023; 16(2):541. https://doi.org/10.3390/ma16020541
Chicago/Turabian StyleHuang, Shijie, Xiumin Yao, Jialin Bai, Zhengren Huang, and Xuejian Liu. 2023. "Effect of Graphitization Degree of Mesocarbon Microbeads (MCMBs) on the Microstructure and Properties of MCMB-SiC Composites" Materials 16, no. 2: 541. https://doi.org/10.3390/ma16020541
APA StyleHuang, S., Yao, X., Bai, J., Huang, Z., & Liu, X. (2023). Effect of Graphitization Degree of Mesocarbon Microbeads (MCMBs) on the Microstructure and Properties of MCMB-SiC Composites. Materials, 16(2), 541. https://doi.org/10.3390/ma16020541