Investigations on Caesium Dispersion and Molybdenum Coating on SPIDER Components
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Powder Samples from PG, BP and PDP
3.2. BF Probes
3.3. FTIR
3.4. Gamma Spectrometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sonato, P.; Agostinetti, P.; Anaclerio, G.; Antoni, V.; Barana, O.; Bigi, M.; Boldrin, M.; Cavenago, M.; Dal Bello, S.; Palma, M.D.; et al. The ITER full size plasma source device design. Fusion Eng. Des. 2009, 84, 269–274. [Google Scholar] [CrossRef]
- Toigo, V.; Marcuzzi, D.; Serianni, G.; Boldrin, M.; Chitarin, G.; Bello, S.D.; Grando, L.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; et al. On the road to ITER NBIs: SPIDER improvement after first operation and MITICA construction progress. Fusion Eng. Des. 2021, 168, 112622. [Google Scholar] [CrossRef]
- Marcuzzi, D.; Agostinetti, P.; Dalla Palma, M.; Degli Agostini, F.; Pavei, M.; Rizzolo, A.; Tollin, M.; Trevisan, L. Detail design of the beam source for the SPIDER experiment. Fusion Eng. Des. 2010, 85, 1792–1797. [Google Scholar] [CrossRef]
- Singh, M.J.; De Esch, H.P.L.; Hemsworth, R.; Boilson, D. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER. In AIP Conference Proceedings, Proceedings of the Fourth International Symposium on Negative Ions, Beams and Sources (NIBS 2014), Garching, Germany, 6–10 October 2014; American Institute of Physics Inc.: College Park, MD, USA, 2015; Volume 1655. [Google Scholar] [CrossRef]
- Masiello, A.; Annino, C.; Busch, M.; Ceracchi, A.; Corniani, G.; Faso, D.; Forest, V.; Geli, F.; Graceffa, J.; Grenier, J.M.; et al. The fabrication and assembly of the beam source for the SPIDER experiment. Fusion Eng. Des. 2019, 146, 839–844. [Google Scholar] [CrossRef]
- Gavrilyuk, V.M.; Naumovets, A.G.; Fedorus, A.G. Investigation of adsorption of cesium on a tungsten single crystal. J. Exptl. Theor. Phys. 1967, 24, 899–905. [Google Scholar]
- Rizzolo, A.; Pavei, M.; Pomaro, N. Caesium oven design and R&D for the SPIDER beam source. Fusion Eng. Des. 2013, 88, 1007–1010. [Google Scholar] [CrossRef]
- Singh, P.; Bandyopadhyay, M.; Pandya, K.; Bhuyan, M.; Chakraborty, A. Characterization of in situ work function and cesium flux measurement setup suitable for cesium seeded negative ion source applications. Nucl. Fusion 2019, 59, 106023. [Google Scholar] [CrossRef]
- Dell’Amico, D.B.; Bertagnolli, H.; Calderazzo, F.; D’Arienzo, M.; Gross, S.; Labella, L.; Rancan, M.; Scotti, R.; Bernd, M.S.; Supplit, R.; et al. Nanostructured copper oxide on silica-zirconia mixed oxides by chemical implantation. Chem.-A Eur. J. 2009, 15, 4931–4943. [Google Scholar] [CrossRef] [PubMed]
- Rancan, M.; Sedona, F.; Di Marino, M.; Armelao, L.; Sambi, M. Chromium wheels quasi-hexagonal 2D assembling by direct UHV sublimation. Chem. Commun. 2011, 47, 5744–5746. [Google Scholar] [CrossRef] [PubMed]
- Kondev, F.G.; Wang, M.; Huang, W.J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. C 2021, 45, 030001. [Google Scholar] [CrossRef]
- WebElements Periodic Table Caesium Reactions of Elements. Available online: https://www.webelements.com/caesium/chemistry.html (accessed on 12 September 2022).
- Zhao, S.; Yin, J.; Zhou, K.; Cheng, Y.; Yu, B. In situ fabrication of molybdenum disulfide based nanohybrids for reducing fire hazards of epoxy. Compos. Part A Appl. Sci. Manuf. 2019, 122, 77–84. [Google Scholar] [CrossRef]
- Al-rawi, S.S.; Jassim, A.H.; Al-hilli, H.A. FTIR Spectra of Molybdenum Tellurite Glasses. Iraqi J. Appl. Phys. 2006, 2, 23–25. [Google Scholar]
- Ramana, C.V.; Atuchin, V.V.; Pokrovsky, L.D.; Becker, U.; Julien, C.M. Structure and chemical properties of molybdenum oxide thin films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2007, 25, 1166–1171. [Google Scholar] [CrossRef]
- Guzman, G.; Yebka, B.; Livage, J.; Julien, C. Lithium intercalation studies in hydrated molybdenum oxides. Solid State Ionics 1996, 86–88, 407–413. [Google Scholar] [CrossRef]
- Stoch, A.; Stoch, J.; Gurbiel, J.; Cichocińska, M.; Mikołajczyk, M.; Timler, M. FTIR study of copper patinas in the urban atmosphere. J. Mol. Struct. 2001, 596, 201–206. [Google Scholar] [CrossRef]
- Greenwood, L.R.; Doran, D.G.; Heinisch, H.L. Production of 91 Nb, 94 Nb, and 95 Nb from Mo by 14.5–14.8 MeV neutrons. Phys. Rev. C 1987, 35, 76–80. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Identification Code | Location | Aspect | Type of Analyses |
---|---|---|---|---|
n.3 | 3 | PDP, BP, PG | Mix of colours: green and white | FTIR |
n.4 | PDP_4 | PDP | White compound, flake shape | SEM-EDS |
n.6 | PDP_6 | PDP | White compound | SEM-EDS |
n.9 | BP_9 | BP bottom left | Greenish compound | SEM-EDS, XRD, XPS |
n.10 | BP_10 | BP bottom right | White compound | SEM-EDS, XRD |
n.11 | PG_11 | PG beamlets | Molybdenum chips | SEM-EDS, XRD, XPS |
Cu at. % | Mo at. % | Mo/Cu | |
---|---|---|---|
Sample BP_9 | 33.3 | 66.7 | 2.0 |
Sample PG_11 | 47.9 | 52.1 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candela, V.; Cavallini, C.; Gasparrini, C.; Armelao, L.; Candeloro, V.; Dalla Palma, M.; Fadone, M.; Marcuzzi, D.; Pavei, M.; Pepato, A.; et al. Investigations on Caesium Dispersion and Molybdenum Coating on SPIDER Components. Materials 2023, 16, 206. https://doi.org/10.3390/ma16010206
Candela V, Cavallini C, Gasparrini C, Armelao L, Candeloro V, Dalla Palma M, Fadone M, Marcuzzi D, Pavei M, Pepato A, et al. Investigations on Caesium Dispersion and Molybdenum Coating on SPIDER Components. Materials. 2023; 16(1):206. https://doi.org/10.3390/ma16010206
Chicago/Turabian StyleCandela, Valentina, Caterina Cavallini, Claudia Gasparrini, Lidia Armelao, Valeria Candeloro, Mauro Dalla Palma, Michele Fadone, Diego Marcuzzi, Mauro Pavei, Adriano Pepato, and et al. 2023. "Investigations on Caesium Dispersion and Molybdenum Coating on SPIDER Components" Materials 16, no. 1: 206. https://doi.org/10.3390/ma16010206
APA StyleCandela, V., Cavallini, C., Gasparrini, C., Armelao, L., Candeloro, V., Dalla Palma, M., Fadone, M., Marcuzzi, D., Pavei, M., Pepato, A., Pouradier Duteil, B., Rancan, M., Rizzolo, A., Sartori, E., Segalini, B., Serianni, G., Spolaore, M., Zorzi, F., & Sonato, P. (2023). Investigations on Caesium Dispersion and Molybdenum Coating on SPIDER Components. Materials, 16(1), 206. https://doi.org/10.3390/ma16010206