Stability-Enhanced Emission Based on Biophotonic Crystals in Liquid Crystal Random Lasers
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rashidi, M.; Haggren, T.; Su, Z.; Jagadish, C.; Mokkapati, S.; Tan, H. Managing Resonant and Nonresonant Lasing Modes in GaAs Nanowire Random Lasers. Nano Lett. 2021, 2021, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Consoli, A.; Caselli, N.; López, C. Electrically driven random lasing from a modified Fabry-Perot laser diode. Nat. Photon. 2021, 16, 219–225. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Xiao, S.; Zhang, N.; Fan, Y.; Qu, G.; Song, Q. Surface-Emitting Perovskite Random Lasers for Speckle-Free Imaging. ACS Nano 2019, 13, 10653–10661. [Google Scholar] [CrossRef] [PubMed]
- Dogru-Yuksel, I.B.; Jeong, C.; Park, B.; Han, M.; Lee, J.S.; Kim, T.I.; Nizamoglu, S. Silk Nanocrack Origami for Controllable Random Lasers. Adv. Funct. Mater. 2021, 31, 2104914. [Google Scholar] [CrossRef]
- Ali, A.T.; Maryam, W.; Huang, Y.W.; Hsu, H.C.; Ahmed, N.M.; Zainal, N.; Jameel, M.S. SiO2 Capped-ZnO nanorods for enhanced random laser emission. Opt. Laser Technol. 2022, 147, 107633. [Google Scholar] [CrossRef]
- Xie, R.C.; Tsay, S.Y.; Wu, J.J.; Kuo, C.C.; Zhang, H.; Lin, J.H. Manipulation of plasmonic random laser from dye-doped liquid crystals inside photonic crystal fiber by the electric field. Opt. Laser Technol. 2022, 151, 108013. [Google Scholar] [CrossRef]
- Dai, G.; Wang, L.; Deng, L. Flexible random laser from dye doped stretchable polymer film containing nematic liquid crystal. Opt. Mater. Express 2020, 10, 68–75. [Google Scholar] [CrossRef]
- Biswas, S.; Kumbhakar, P. Continuous wave random lasing in naturally occurring biocompatible pigments and reduction of lasing threshold using triangular silver nanostructures as scattering media. Nanoscale 2017, 9, 18812–18818. [Google Scholar] [CrossRef]
- Meng, X.; Fujita, K.; Moriguchi, Y.; Zong, Y.; Tanaka, K. Metal-Dielectric Core-Shell Nanoparticles: Advanced Plasmonic Architectures Towards Multiple Control of Random Lasers. Adv. Opt. Mater. 2013, 1, 573–580. [Google Scholar] [CrossRef]
- Hsu, Y.; Tai, C.; Wu, H.; Hou, C.; Liao, Y.; Liao, W.; Haider, G.; Hsiao, Y.; Lee, C.; Chang, S.; et al. Self-Healing Nanophotonics: Robust and Soft Random Lasers. ACS Nano 2019, 13, 8977–8985. [Google Scholar] [CrossRef]
- Hu, H.; Haider, G.; Liao, Y.; Roy, P.K.; Ravindranath, R.; Chang, H.; Lu, C.; Tseng, C.; Lin, T.; Shih, W.; et al. Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, X.; Pang, Z.; Su, X.; Liu, H.; Feng, S.; Wang, L. Random Laser Based on Waveguided Plasmonic Gain Channels. Nano Lett. 2011, 11, 4295–4298. [Google Scholar] [CrossRef] [PubMed]
- Gummaluri, V.S.; Gayathri, R.; Vijayan, C.; Matham, M.V. Bio-inspired wrinkle microstructures for random lasing governed by surface roughness. Opt. Lett. 2021, 46, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.P.; Hong, Y.H.; Chen, L.R.; Kao, T.S.; Lu, T.C. Effect of Passivation Layer on the Thin Film Perovskite Random Lasers. Materials 2020, 13, 2322. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Xiao, S.; Xu, Z.; Liu, J.; Sun, X.; Drachev, V.; Shalaev, V.M.; Akkus, O.; Kim, Y.L. Random lasing in bone tissue. Opt. Lett. 2010, 35, 1425–1427. [Google Scholar] [CrossRef] [PubMed]
- Polson, R.C.; Vardeny, Z.V. Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289–1291. [Google Scholar] [CrossRef]
- Toffanin, S.; Kim, S.; Cavallini, S.; Natali, M.; Benfenati, V.; Amsden, J.J.; Kaplan, D.L.; Zamboni, R.; Muccini, M.; Omenetto, F.G. Low-threshold blue lasing from silk fibroin thin films. Appl. Phys. Lett. 2012, 101, 091110. [Google Scholar] [CrossRef]
- Da Silva, R.R.; Dominguez, C.T.; Dos Santos, M.V.; Barbosa-Silva, R.; Cavicchioli, M.; Christovan, L.M.; de Melo, L.S.A.; Gomes, A.S.L.; de Araujo, C.B.; Ribeiro, S.J.L. Silk fibroin biopolymer films as efficient hosts for DFB laser operation. J. Mater. Chem. C 2013, 1, 7181–7190. [Google Scholar] [CrossRef]
- Viola, I.; Ghofraniha, N.; Zacheo, A.; Arima, V.; Conti, C.; Gigli, G. Random laser emission from a paper-based device. J. Mater. Chem. C 2013, 1, 8128–8133. [Google Scholar] [CrossRef]
- Chen, Y.C.; Wang, C.S.; Chang, T.Y.; Lin, T.Y.; Lin, H.M.; Chen, Y.F. Ultraviolet and visible random lasers assisted by diatom frustules. Opt. Express 2015, 23, 16224–16231. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Q.; Sun, Y.; Fan, X. Bio-inspired optofluidic lasers with luciferin. Appl. Phys. Lett. 2013, 102, 203706. [Google Scholar] [CrossRef]
- Sun, T.; Wang, C.; Liao, C.; Lin, S.; Perumal, P.; Chiang, C.; Chen, Y. Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano 2015, 9, 12436–12441. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Goswami, K.; Mondal, H.; Datta, T.; Sen, M. A review on photonic crystal based all-optical logic decoder: Linear and nonlinear perspectives. Opt. Quant. Eelctron. 2022, 54, 1–24. [Google Scholar]
- Goswami, K.; Mondal, H.; Sen, M.; Sharma, A. Design and Analysis of All-Optical Isolator Based on Linear Photonic Crystal. Braz. J. Phys. 2022, 52, 1–10. [Google Scholar] [CrossRef]
- Mondal, H.; Sen, M.; Goswami, K. Design and analysis of all-optical 1-to-2 line decoder based on linear photonic crystal. IET Optoelectron 2019, 13, 191–195. [Google Scholar] [CrossRef]
- Stavenga, D.G.; Giraldo, M.A.; Leertouwer, H.L. Butterfly wing colors: Glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane. J. Exp. Biol. 2010, 213, 1731–1739. [Google Scholar] [CrossRef]
- Zhang, D.; Kostovski, G.; Karnutsch, C.; Mitchell, A. Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures. Org. Electron. 2012, 13, 2342–2345. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, G.; Wang, S.; Yang, C.; Yin, J.; Zhou, S. Coherent random lasing from liquid waveguide gain channels with biological scatters. Appl. Phys. Lett. 2014, 105, 253702. [Google Scholar] [CrossRef]
- Wang, C.; Chang, T.; Lin, T.; Chen, Y. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors. Sci. Rep. 2014, 4, 6736. [Google Scholar] [CrossRef]
- Chen, S.W.; Lu, J.Y.; Hung, B.Y.; Chiesa, M.; Tung, P.H.; Lin, J.H.; Yang, T.C.K. Random Lasers from Photonic Crystal Wings of Butterfly and Moth for Speckle-Free Imaging. Opt. Express 2021, 29, 2065–2076. [Google Scholar] [CrossRef]
- Ye, L.; Liu, B.; Li, F.; Feng, Y.; Cui, Y.; Lu, Y. The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals. Laser Phys. Lett. 2016, 13, 105001. [Google Scholar] [CrossRef]
- Vollmer, F.; Arnold, S.; Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl Acad. Sci. USA 2008, 105, 20701–20704. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Deng, L.; An, Y. Influence of fiber and MnCl2 on mode and threshold of random lasing in random gain systems. Opt. Express 2017, 25, 32522–32531. [Google Scholar] [CrossRef]
Sample | Type | DCM (mL) | PM597 (mL) | Liquid Crystal (mL) | Capillary Glass (5 × 50 mm) | Glass Substrate (2 × 2 cm) |
---|---|---|---|---|---|---|
DCM/LC | - | 0.2 | - | 1 | 1 | - |
DCM/LC/Wing | Wing | 0.2 | - | 1 | - | 1 |
PM597/Wing | Powder | 1 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Z.; Wang, Z.; Dai, G. Stability-Enhanced Emission Based on Biophotonic Crystals in Liquid Crystal Random Lasers. Materials 2023, 16, 200. https://doi.org/10.3390/ma16010200
Shang Z, Wang Z, Dai G. Stability-Enhanced Emission Based on Biophotonic Crystals in Liquid Crystal Random Lasers. Materials. 2023; 16(1):200. https://doi.org/10.3390/ma16010200
Chicago/Turabian StyleShang, Zhenzhen, Zhi Wang, and Guang Dai. 2023. "Stability-Enhanced Emission Based on Biophotonic Crystals in Liquid Crystal Random Lasers" Materials 16, no. 1: 200. https://doi.org/10.3390/ma16010200
APA StyleShang, Z., Wang, Z., & Dai, G. (2023). Stability-Enhanced Emission Based on Biophotonic Crystals in Liquid Crystal Random Lasers. Materials, 16(1), 200. https://doi.org/10.3390/ma16010200