Influence of the Stainless-Steel Microstructure on Tribological Behavior and Surface Integrity after Ball Burnishing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemical Composition and Material Processing
2.1.2. Microstructural Characterization
2.1.3. Hardness
2.1.4. Surface Roughness
2.2. Experimental Methods
2.2.1. Ball-Burnishing Process
2.2.2. Uniaxial Tensile Properties
2.2.3. Friction Coefficient
2.2.4. Surface Integrity Characterization
Residual Stresses
3. Results
3.1. Friction
3.2. Surface Integrity
3.2.1. Surface Roughness
3.2.2. X-ray Difracction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ssk | Skewness |
XRD | X-ray diffraction |
Sa | Arithmetical mean height |
Sq | Root mean square height |
Sku | Kurtosis |
Str | Texture aspect ratio |
S10z | Ten-point height |
Lc | Parallel length |
E | Young’s modulus |
ν | Poisson coefficient |
σ0.2 | Yield strength |
UTS | Ultimate tensile strength |
n | Self-hardening coefficient |
p0 | Pressure in the center of the contact region |
F | Normal force |
R | Indenter radius |
E* | Reduced elastic modulus |
ASM | American Society of Materials |
COF | Coefficient of friction |
References
- Kumar, N.; Kumar, M.; Sharma, N.; Shah, P.; Ranganath, M.S.; Mishra, R.S. Mechanical Properties and Microstructural Analysis of AISI 316 During Different Types of Welding Processes: A Review Manufacturing; IJAPIE: New Delhi, India, 2017. [Google Scholar]
- Magnabosco, R.; Alonso-falleiros, N. Effect of Aging Heat Treatment H950 and H1000 on Mechanical and Pitting Corrosion Properties of UNS S46500 Stainless Steel. Mater. Res. 2018, 22, 1–9. [Google Scholar] [CrossRef]
- El-Tayeb, N.S.M.; Low, K.O.; Brevern, P.V. Influence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of Aluminium 6061. J. Mater. Process. Technol. 2007, 186, 272–278. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering, 9th ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Michael, A.; Shercliff, H.; Cebon, D. Materials: Engineering, Science, Processing and Design, 1st ed.; Butterworth-Heinemann: Cambridge, UK, 2007; ISBN 978-0-7506-8391-3. [Google Scholar]
- Yang, S.; Li, W. Surface Finishing Theory and New Technology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Bouzid Saï, W.; Lebrun, J.L. Influence of finishing by burnishing on surface characteristics. J. Mater. Eng. Perform. 2003, 12, 37–40. [Google Scholar] [CrossRef]
- Konefał, K.; Korzyński, M.; Byczkowska, Z.; Korzyńska, K. Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing. J. Mater. Process. Technol. 2013, 213, 1997–2004. [Google Scholar] [CrossRef]
- Kułakowska, A.; Patyk, R.; Bohdal, Ł.; Kałduński, P.; Chodór, J.; Koszalińska, P. Wybrane aspekty ekoinnowacyjnej obróbki nagniataniem, Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska. Rocz. Ochr. Sr. 2016, Tom 18, 478–492. [Google Scholar]
- Balland, P.; Tabourot, L.; Degre, F.; Moreau, V. Mechanics of the burnishing process. Precis. Eng. 2013, 37, 129–134. [Google Scholar] [CrossRef]
- Jerez-Mesa, R. Study and Characterization of Surface Integrity Modification after Ultrasonic Vibration-Assisted Ball Burnishing; Mechanics of materials [physics.class-ph]; Université Paul Sabatier, Toulouse III: Toulouse, France, 2018. [Google Scholar]
- Kuznetsov, V.P.; Smolin, I.Y.; Dmitriev, A.I.; Tarasov, S.Y.; Gorgots, V.G. Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel. Surf. Coat. Technol. 2016, 285, 171–178. [Google Scholar] [CrossRef]
- Chomienne, V.; Valiorgue, F.; Rech, J.; Verdu, C. CIRP Journal of Manufacturing Science and Technology Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel. CIRP J. Manuf. Sci. Technol. 2016, 13, 90–96. [Google Scholar] [CrossRef]
- Jerez-Mesa, R.; Fargas, G.; Roa, J.J.; Llumà, J.; Travieso-Rodriguez, J.A. Superficial effects of ball burnishing on trip steel AISI 301LN sheets. Metals 2021, 11, 82. [Google Scholar] [CrossRef]
- Zaborski, A.; Tubielewicz, K.; Major, B. Contribution of burnishing to the microstructure and texture in surface layers of carbon steel. Arch. Metall 2000, 45, 333–341. [Google Scholar]
- Capilla-González, G.; Martínez-Ramírez, I.; Díaz-Infante, D.; Hernández-Rodríguez, E.; Alcántar-Camarena, V.; Saldaña-Robles, A. Effect of the ball burnishing on the surface quality and mechanical properties of a TRIP steel sheet. Int. J. Adv. Manuf. Technol. 2021, 116, 3953–3964. [Google Scholar] [CrossRef]
- Mahajan, D.; Tajane, R. A Review on Ball Burnishing Process. Int. J. Sci. Res. Publ. 2013, 3, 1–8. [Google Scholar]
- Malleswara Rao, J.N.; Chenna Kesava Reddy, A.; Rama Rao, P.V. The effect of roller burnishing on surface hardness and surface roughness on mild steel specimens. Int. J. Appl. Eng. Research. 2011, 1, 777–785. [Google Scholar]
- Dzierwa, A.; Markopoulos, A.P. Influence of ball-burnishing process on surface topography parameters and tribological properties of hardened steel. Machines 2019, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Bugtai, N.; Marinescu, I.D. Burnishing of aerospace alloy: A theoretical—experimental approach. J. Manuf. Syst. 2015, 37, 472–478. [Google Scholar]
- Amini, C.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Llumà, J.; Estevez-Urra, A. Finite element analysis of ball burnishing on ball-end milled surfaces considering their original topology and residual stress. Metals 2020, 10, 638. [Google Scholar] [CrossRef]
- Jerez-mesa, R.; Travieso-rodríguez, J.A.; Landon, Y.; Dessein, G.; Lluma-fuentes, J. Comprehensive analysis of surface integrity modi fi cation of ball-end milled Ti-6Al-4V surfaces through vibration-assisted ball burnishing. J. Mater. Process. Technol. 2019, 267, 230–240. [Google Scholar] [CrossRef]
- Travieso-Rodríguez, J.A.; Jerez-Mesa, R.; Gómez-Gras, G.; Llumà-Fuentes, J.; Casadesús-Farràs, O.; Madueño-Guerrero, M. Hardening effect and fatigue behavior enhancement through ball burnishing on AISI 1038. J. Mater Res. Technol. 2019, 8, 5639–5646. [Google Scholar] [CrossRef]
- Jerez-Mesa, R.; Landon, Y.; Travieso-Rodriguez, J.A.; Dessein, G.; Llumà, J.; Wagner, V. Topological surface integrity modification of AISI 1038 alloy after vibration-assisted ball burnishing. Surf. Coat. Technol. 2018, 349, 364–377. [Google Scholar] [CrossRef]
- Mesa, R.J.; Gómez, G.; Travieso-Rodríguez, J.A.; Llumà, J.; Casadesús, O.; Madueño, M. Estudio Experimental del Efecto de Bruñido Sobre la Vida a Fatiga de Probetas de Acero AISI 1038; Mecánica: Elche, Spain, 2016. [Google Scholar]
- ISO 25178-2:2016; Geometrical Product Specifications (GPS)—Surface Quality Texture: Areal—Part 21: Terms, Definitions and Surface Quality Parameters Indication of Surface Texture. ISO: Geneva, Switzerland, 2016.
- Jerez-Mesa, R.; Gómez Gras, G.; Travieso-Rodriguez, J.A.; Llumà, J. Ultrasonic Vibration-Assisted Ball Burnishing Tool; Universitat Politècnica de Catalunya: Barcelona, Spain, 2018. [Google Scholar]
- ISO 6892-1:2009; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature, European Committee for Standardization. ISO: Geneva, Switzerland, 2009.
- Popov, V.L. Tratamiento riguroso del contacto—El Contacto Hertziano. In Principios y Aplicaciones de la Mecánica de Contacto en Tribología, Fricción y Adherencia, 3rd ed.; Martín-Martínez, J.M., Moreno-Flores, S., Eds.; Publicacions de la Universitat d’Alacant: Alicante, España, 2015; pp. 79–85. [Google Scholar]
- Gresham, R.M. ASM HANDBOOK Volume 18: Friction, Lubrication, and Wear Technology; Tribology & Lubrication Technology; Totten, G.E., Ed.; Portland State University: Portland, OR, USA, 2018; Volume 74, p. 84. [Google Scholar]
Material | Fe | C | Mn | Ti | Cr | Ni | Mo |
---|---|---|---|---|---|---|---|
AISI 316 | 68.50 ± 0.03 | 0.02 ± 2 × 10−4 | 1.25 ± 4 × 10−3 | 0.01 ± 1 × 10−4 | 16.69 ± 0.01 | 9.92 ± 0.02 | 2.21 ± 0.005 |
UNS S46500 | 74.40 ± 0.02 | 0.01 ± 6 × 10−4 | 0.03 ± 3 × 10−4 | 1.70 ± 0.02 | 11.69 ± 0.03 | 10.89 ± 0.01 | 1.01 ± 6 × 10−3 |
Tool | Ball Mill UT Coating ø 10 [mm]—Two Teeth |
---|---|
Lateral pass width | 0.30 [mm] |
Depth of cut | 0.20 [mm] |
Feed rate | 600 [mm/min] |
Cutting speed | 2000 [rpm] |
Load | 270 [N]/470 [N] |
Feed rate | 600 [mm/min] |
Lateral pass width | 0.30 [mm] |
Vibration-assistance | No |
Material | E [GPa] | ν | σ0.2 [MPa] | UTS [MPa] | n |
---|---|---|---|---|---|
AISI 316 | 203.6 ± 0.4 | 0.287 ± 6 × 10−4 | 327 ± 2 | 588 ± 1 | 0.307 ± 8 × 10−4 |
UNS S46500 | 198.8 ± 0.4 | 0.294 ± 2 × 10−4 | 1571 ± 8 | 1656 ± 5 | 0.029 ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, A.; Cuadrado, N.; Llumà, J.; Vilaseca, M.; Travieso-Rodriguez, J.A. Influence of the Stainless-Steel Microstructure on Tribological Behavior and Surface Integrity after Ball Burnishing. Materials 2022, 15, 8829. https://doi.org/10.3390/ma15248829
Torres A, Cuadrado N, Llumà J, Vilaseca M, Travieso-Rodriguez JA. Influence of the Stainless-Steel Microstructure on Tribological Behavior and Surface Integrity after Ball Burnishing. Materials. 2022; 15(24):8829. https://doi.org/10.3390/ma15248829
Chicago/Turabian StyleTorres, Alejandra, Nuria Cuadrado, Jordi Llumà, Montserrat Vilaseca, and J. Antonio Travieso-Rodriguez. 2022. "Influence of the Stainless-Steel Microstructure on Tribological Behavior and Surface Integrity after Ball Burnishing" Materials 15, no. 24: 8829. https://doi.org/10.3390/ma15248829
APA StyleTorres, A., Cuadrado, N., Llumà, J., Vilaseca, M., & Travieso-Rodriguez, J. A. (2022). Influence of the Stainless-Steel Microstructure on Tribological Behavior and Surface Integrity after Ball Burnishing. Materials, 15(24), 8829. https://doi.org/10.3390/ma15248829