Chemical Vapor Deposition of <110> Textured Diamond Film through Pre-Seeding by Diamond Nano-Sheets
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogus, A.; Gebeshuber, I.C.; Pauschitz, A.; Roy, M.; Haubner, R. Micro- and nanomechanical properties of diamond film with various surface morphologies. Diam. Relat. Mater. 2008, 17, 1998–2004. [Google Scholar] [CrossRef]
- Jakubcová, B.; Turňová, J.; Řehounek, O.; Polák, J.; Mineva, A.; Taylor, A.; Hubík, P.; Petrák, V.; Petráková, V. Neuron Adhesion on Diamond: Competition between Polymer Treatment and Surface Morphology. Adv. Eng. Mater. 2018, 20, 1800182. [Google Scholar] [CrossRef]
- Shao, G.; Wang, J.; Zhang, S.; Wang, Y.; Wang, W.; Wang, H.X. Surface Morphology and Microstructure Evolution of Single Crystal Diamond during Different Homoepitaxial Growth Stages. Materials 2021, 14, 5964. [Google Scholar] [CrossRef] [PubMed]
- Okushi, H.; Watanabe, H.; Ri, S.; Yamanaka, S.; Takeuchi, D. Device-grade homoepitaxial diamond film growth. J. Cryst. Growth 2002, 237, 1269–1276. [Google Scholar] [CrossRef]
- Abu Suilik, S.B.; Shimamoto, D.; Kitagawa, H.; Hasezaki, K.; Noda, Y. Experimental study of nucleation and quality of CVD diamond adopting two-step deposition approach using MPECVD. Diam. Relat. Mater. 2006, 15, 1765–1772. [Google Scholar] [CrossRef]
- Wang, B.; Weng, J.; Wang, Z.T.; Wang, J.H.; Liu, F.; Xiong, L.W. Investigation on the influence of the gas flow mode around substrate on the deposition of diamond films in an overmoded MPCVD reactor chamber. Vacuum 2020, 182, 109659. [Google Scholar] [CrossRef]
- Weng, J.; Wang, J.H.; Dai, S.Y.; Xiong, L.W.; Man, W.D.; Liu, F. Preparation of diamond films with controllable surface morphology, orientation and quality in an overmoded microwave plasma CVD chamber. Appl. Surf. Sci. 2013, 276, 529–534. [Google Scholar] [CrossRef]
- Feoktistov, N.A.; Grudinkin, S.A.; Golubev, V.G.; Baranov, M.A.; Bogdanov, K.V.; Kukushkin, S.A. Evolution of the morphology of diamond particles and mechanism of their growth during the synthesis by chemical vapor deposition. Phys. Solid State 2015, 57, 2184–2190. [Google Scholar] [CrossRef]
- Clausing, R.E.; Heatherly, L.; Horton, L.L.; Specht, E.D.; Begun, G.M.; Wang, Z.L. Textures and morphologies of chemical vapor-deposited (CVD) diamond. Diam. Relat. Mater. 1992, 1, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Vanderdrift, A. Evolutionary selection a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 1967, 22, 267–288. [Google Scholar]
- Bland, H.A.; Thomas, E.L.H.; Klemencic, G.M.; Mandal, S.; Morgan, D.J.; Papageorgiou, A.; Jones, T.G.; Williams, O.A. Superconducting Diamond on Silicon Nitride for Device Applications. Sci. Rep. 2019, 9, 2911. [Google Scholar] [CrossRef] [PubMed]
- Cabral, G.; Madaleno, J.C.; Titus, E.; Ali, N.; Grácio, J. Diamond chemical vapour deposition on seeded cemented tungsten carbide substrates. Thin Solid Film. 2006, 515, 158–163. [Google Scholar] [CrossRef]
- Degutis, G.; Pobedinskas, P.; Boyen, H.G.; Dexters, W.; Janssen, W.; Drijkoningen, S.; Hardy, A.; Haenen, K.; Van Bael, M.K. Improved nanodiamond seeding on chromium by surface plasma pretreatment. Chem. Phys. Lett. 2015, 640, 50–54. [Google Scholar] [CrossRef]
- Li, Y.S.; Yang, L.; Tang, Y.; Zhang, C.; Zhang, L.; Onyeka, I.; Yang, Q.; Feng, R.; Hirose, A. Adherent nanocrystalline diamond coatings deposited on Ti substrate at moderate temperatures. Surf. Coat. Technol. 2011, 206, 1971–1976. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhang, C.Z.; Ma, H.T.; Yang, L.Z.; Zhang, L.L.; Tang, Y.; Li, X.J.; He, L.L.; Feng, R.; Yang, Q.; et al. CVD nanocrystalline diamond coatings on Ti alloy: A synchrotron-assisted interfacial investigation. Mater. Chem. Phys. 2012, 134, 145–152. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Chattopadhyay, A.; Chattopadhyay, A.K. Effect of pretreatment methods and chamber pressure on morphology, quality and adhesion of HFCVD diamond coating on cemented carbide inserts. Appl. Surf. Sci. 2008, 254, 3721–3733. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Chattopadhyay, A.; Chattopadhyay, A.K. Influence of process parameters on growth of diamond crystal on cemented carbide substrates by HFCVD system. Int. J. Refract. Met. Hard Mater. 2012, 31, 1–13. [Google Scholar] [CrossRef]
- Tzeng, Y.-F.; Lee, C.-Y.; Chiu, H.-T.; Tai, N.-H.; Lin, I.N. Electron field emission properties on ultra-nano-crystalline diamond coated silicon nanowires. Diam. Relat. Mater. 2008, 17, 1817–1820. [Google Scholar] [CrossRef]
- Guo, L.; Yang, J.; Liu, Y.; Shao, J.; Wu, Y.; Dai, S. Two new kinds of nanodiamonds with the structure of controlled sp3/sp2 carbon ratio and carbon atom dimer by the cleavage plane mechanical stripping crush separation preparation technology. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 42–51. [Google Scholar] [CrossRef]
- Fernandes, A.J.S.; Neto, M.A.; Almeida, F.A.; Silva, R.F.; Costa, F.M. Nano- and micro-crystalline diamond growth by MPCVD in extremely poor hydrogen uniform plasmas. Diam. Relat. Mater. 2007, 16, 757–761. [Google Scholar] [CrossRef]
- Klauser, F.; Steinmüller-Nethl, D.; Kaindl, R.; Bertel, E.; Memmel, N. Raman Studies of Nano- and Ultra-nanocrystalline Diamond Films Grown by Hot-Filament CVD. Chem. Vap. Depos. 2010, 16, 127–135. [Google Scholar] [CrossRef]
- Kuzmany, H.; Pfeiffer, R.; Salk, N.; Günther, B. The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 2004, 42, 911–917. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Z.; Cui, J.; Jiang, N.; Lyu, J.; Chen, G.; Wang, J.; Liu, Z.; Yu, J.; Lin, C.; et al. In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation. ACS Appl. Mater. Inter. 2017, 9, 29451–29456. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, B.; Hou, X.; Li, L.; Guan, C.; Pan, Z.; Li, M.; Du, Y.; Lu, Y.; Wei, X.; et al. Constructing Tanghulu-like Diamond@Silicon carbide nanowires for enhanced thermal conductivity of polymer composite. Compos. Commun. 2022, 29, 101118. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Lu, Y.; Wang, B.; Xia, Y.; Chen, H.; Song, H.; Yi, J.; Deng, L.; Wang, Y.; Li, H. Chemical Vapor Deposition of <110> Textured Diamond Film through Pre-Seeding by Diamond Nano-Sheets. Materials 2022, 15, 7776. https://doi.org/10.3390/ma15217776
Yang G, Lu Y, Wang B, Xia Y, Chen H, Song H, Yi J, Deng L, Wang Y, Li H. Chemical Vapor Deposition of <110> Textured Diamond Film through Pre-Seeding by Diamond Nano-Sheets. Materials. 2022; 15(21):7776. https://doi.org/10.3390/ma15217776
Chicago/Turabian StyleYang, Guoyong, Yunxiang Lu, Bo Wang, Yue Xia, Huanyi Chen, Hui Song, Jian Yi, Lifen Deng, Yuezhong Wang, and He Li. 2022. "Chemical Vapor Deposition of <110> Textured Diamond Film through Pre-Seeding by Diamond Nano-Sheets" Materials 15, no. 21: 7776. https://doi.org/10.3390/ma15217776
APA StyleYang, G., Lu, Y., Wang, B., Xia, Y., Chen, H., Song, H., Yi, J., Deng, L., Wang, Y., & Li, H. (2022). Chemical Vapor Deposition of <110> Textured Diamond Film through Pre-Seeding by Diamond Nano-Sheets. Materials, 15(21), 7776. https://doi.org/10.3390/ma15217776