Morphological Features of PUR-Wood Particle Composite Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PUR Composite Foams
2.3. Kinetics of PUR Foaming
- Start of growth: the time it takes for the mixture to start to increase;
- Cream time: the time after mixing the components when the mixture becomes a cream color;
- Gel time: the time in which, after touching with a glass rod, it is possible to remove the so-called “polyurethane thread”;
- Time of growth: time after the maximum foam growth is achieved;
- Tack-free time: the time after the foam solidifies completely;
- Foaming temperature: the temperature measured when the foam grows.
2.4. Characterization of PUR-Wood Particle Composite Foams
3. Results and discussion
3.1. Density
3.2. Kinetics of PUR Foaming
3.3. Morphology of the PUR-WP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kausar, A. Polyurethane Composite Foams in High-Performance Applications: A Review. Polym.-Plast. Technol. Eng. 2018, 57, 346–369. [Google Scholar] [CrossRef]
- Kairytė, A.; Członka, S.; Boris, R.; Vėjelis, S. Evaluation of the Performance of Bio-Based Rigid Polyurethane Foam with High Amounts of Sunflower Press Cake Particles. Materials 2021, 14, 5475. [Google Scholar] [CrossRef] [PubMed]
- Kuranchie, C.; Yaya, A.; Bensah, Y.D. The Effect of Natural Fibre Reinforcement on Polyurethane Composite Foams—A Review. Sci. Afr. 2021, 11, e00722. [Google Scholar] [CrossRef]
- Fan, H. Polyurethane Foams Made from Bio-Based Polyols. Ph.D. Thesis, University of Missouri, Columbia, MI, USA, December 2011. [Google Scholar]
- Konieczny, J.; Loos, K. Green Polyurethanes from Renewable Isocyanates and Biobased White Dextrins. Polymers 2019, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Prociak, A.; Kurańska, M.; Malewska, E.; Szczepkowski, L.; Zieleniewska, M.; Ryszkowska, J.; Ficoń, J.; Rząsa, A. Biobased Polyurethane Foams Modified with Natural Fillers. Polimery 2015, 60, 592–599. [Google Scholar] [CrossRef]
- Mirski, R.; Dukarska, D.; Walkiewicz, J.; Derkowski, A. Waste Wood Particles from Primary Wood Processing as a Filler of Insulation PUR Foams. Materials 2021, 14, 4781. [Google Scholar] [CrossRef]
- Paciorek-Sadowska, J.; Borowicz, M.; Isbrandt, M.; Czupryński, B.; Apiecionek, Ł. The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites. Polymers 2019, 11, 1431. [Google Scholar] [CrossRef] [PubMed]
- Członka, S.; Strąkowska, A.; Kairytė, A.; Kremensas, A. Nutmeg Filler as a Natural Compound for the Production of Polyurethane Composite Foams with Antibacterial and Anti-Aging Properties. Polym. Test. 2020, 86, 106479. [Google Scholar] [CrossRef]
- Kurańska, M.; Prociak, A.; Michałowski, S.; Cabulis, U.; Kirpluks, M. Microcellulose as a Natural Filler in Polyurethane Foams Based on the Biopolyol from Rapeseed Oil. Polimery 2016, 61, 625–632. [Google Scholar] [CrossRef]
- Kurańska, M.; Prociak, A. Właściwości Termoizolacyjne i Mechaniczne Spienionych Kompozytów Poliuretanowych z Włóknami Konopnymi. Chemik 2011, 65, 1055–1058. [Google Scholar]
- Gu, R.; Sain, M.M.; Konar, S.K. A Feasibility Study of Polyurethane Composite Foam with Added Hardwood Pulp. Ind. Crops Prod. 2013, 42, 273–279. [Google Scholar] [CrossRef]
- Paberza, A.; Cabulis, U.; Arshanitsa, A. Wheat Straw Lignin as Filler for Rigid Polyurethane Foams on the Basis of Tall Oil Amide. Polimery 2014, 59, 477–481. [Google Scholar] [CrossRef]
- Shan, C.W.; Idris, M.I.; Ghazali, M.I. Study of Flexible Polyurethane Foams Reinforced with Coir Fibres and Tyre Particles. Int. J. Appl. Phys. Math. 2012, 2, 123–130. [Google Scholar] [CrossRef]
- De Luca Bossa, F.; Santillo, C.; Verdolotti, L.; Campaner, P.; Minigher, A.; Boggioni, L.; Losio, S.; Coccia, F.; Iannace, S.; Lama, G.C. Greener Nanocomposite Polyurethane Foam Based on Sustainable Polyol and Natural Fillers: Investigation of Chemico-Physical and Mechanical Properties. Materials 2020, 13, 211. [Google Scholar] [CrossRef]
- Chris-Okafor, P.U.; Uchechukwu, A.R.M.; Nwokoye, J.N.; Ukpai, E.U. Effects of Coconut Husk and Corn Cob as Fillers in Flexible Polyurethane Foam. Am. J. Polym. Sci. Technol. 2017, 3, 64–69. [Google Scholar] [CrossRef]
- El-Shekeil, Y.A.; Sapuan, S.M.; Abdan, K.; Zainudin, E.S. Influence of Fiber Content on the Mechanical and Thermal Properties of Kenaf Fiber Reinforced Thermoplastic Polyurethane Composites. Mater. Des. 2012, 40, 299–303. [Google Scholar] [CrossRef]
- Zieleniewska, M.; Leszczyński, M.K.; Szczepkowski, L.; Bryśkiewicz, A.; Krzyżowska, M.; Bień, K.; Ryszkowska, J. Development and Applicational Evaluation of the Rigid Polyurethane Foam Composites with Egg Shell Waste. Polym. Degrad. Stab. 2016, 132, 78–86. [Google Scholar] [CrossRef]
- Strąkowska, A.; Członka, S.; Kairytė, A. Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler. Materials 2020, 13, 5493. [Google Scholar] [CrossRef]
- Bryśkiewicz, A.; Zieleniewska, M.; Przyjemska, K.; Chojnacki, P.; Ryszkowska, J. Modification of Flexible Polyurethane Foams by the Addition of Natural Origin Fillers. Polym. Degrad. Stab. 2016, 132, 32–40. [Google Scholar] [CrossRef]
- Sair, S.; Mansouri, S.; Tanane, O.; Abboud, Y.; El Bouari, A. Alfa Fiber-Polyurethane Composite as a Thermal and Acoustic Insulation Material for Building Applications. SN Appl. Sci. 2019, 1, 1–13. [Google Scholar] [CrossRef]
- Ekici, B.; Kentli, A.; Küçük, H. Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Arch. Acoust. 2012, 37, 515–520. [Google Scholar] [CrossRef]
- Tao, Y.; Li, P.; Cai, L. Effect of Fiber Content on Sound Absorption, Thermal Conductivity, and Compression Strength of Straw Fiber-Filled Rigid Polyurethane Foams. BioResources 2016, 11, 4159–4167. [Google Scholar] [CrossRef]
- Grząbka-Zasadzińska, A.; Bartczak, P.; Borysiak, S. Highly Insulative PEG-Grafted Cellulose Polyurethane Foams—From Synthesis to Application Properties. Materials 2021, 14, 6363. [Google Scholar] [CrossRef] [PubMed]
- Sung, G.; Kim, J.H. Influence of Filler Surface Characteristics on Morphological, Physical, Acoustic Properties of Polyurethane Composite Foams Filled with Inorganic Fillers. Compos. Sci. Technol. 2017, 146, 147–154. [Google Scholar] [CrossRef]
- Dukarska, D.; Walkiewicz, J.; Derkowski, A.; Mirski, R. Properties of Rigid Polyurethane Foam Filled with Sawdust from Primary Wood Processing. Materials 2022, 15, 5361. [Google Scholar] [CrossRef]
- Latinwo, G.K.; Aribike, D.S.; Oyekunle, L.O.; Susu, A.A.; Kareem, S.A. Effects of Calcium Carbonate of Different Compositions and Particle Size Distributions on the Mechanical Properties of Flexible Polyurethane Foam. Nat. Sci. 2010, 8, 92–101. [Google Scholar]
- Javni, I.; Song, K.; Lin, J.; Petrovic, Z.S. Structure and Properties of Flexible Polyurethane Foams with Nano- and Micro-Fillers. J. Cell. Plast. 2011, 47, 357–372. [Google Scholar] [CrossRef]
- Latinwo, G.K.; Aribike, D.S.; Susu, A.A.; Kareem, S.A. Effects of Different Filler Treatments on the Morphology and Mechanical Properties of Flexible Polyurethane Foam Composites. Nat. Sci. 2010, 8, 23–31. [Google Scholar]
- de Avila Delucis, R.; Magalhães, W.L.E.; Petzhold, C.L.; Amico, S.C. Forest-Based Resources as Fillers in Biobased Polyurethane Foams. J. Appl. Polym. Sci. 2018, 135, 45684. [Google Scholar] [CrossRef]
- Krishnamurthi, B.; Bharadwaj-Somaskandan, S.; Sergeeva, T.; Shutov, F. Effect of Wood Flour Fillers on Density and Mechanical Properties of Polyurethane Foams. Cell. Polym. 2003, 22, 371–382. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Yang, F. Hydrophobic Modification of Polyurethane Foam for Oil Spill Cleanup. Mar. Pollut. Bull. 2012, 64, 1648–1653. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Zhang, X.; Wang, J.; Wang, X. Polyurethane Foam Containing Microencapsulated Phase-Change Materials with Styrene–Divinybenzene Co-Polymer Shells. J. Mater. Sci. 2009, 44, 3141–3147. [Google Scholar] [CrossRef]
- Iizuka, M.; Goto, R.; Siegkas, P.; Simpson, B.; Mansfield, N. Large Deformation Finite Element Analyses for 3D X-Ray CT Scanned Microscopic Structures of Polyurethane Foams. Materials 2021, 14, 949. [Google Scholar] [CrossRef]
- Şerban, D.A.; Weissenborn, O.; Geller, S.; Marşavina, L.; Gude, M. Evaluation of the Mechanical and Morphological Properties of Long Fibre Reinforced Polyurethane Rigid Foams. Polym. Test. 2016, 49, 121–127. [Google Scholar] [CrossRef]
- Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Gloc, M.; Kulesza, M.; Kowalski, M.; Krauze, S.; Lewandowska, M. Flammability, Mechanical Properties and Structure of Rigid Polyurethane Foams with Different Types of Carbon Reinforcing Materials. Compos. Struct. 2016, 140, 67–76. [Google Scholar] [CrossRef]
- Youssef, S.; Maire, E.; Gaertner, R. Finite Element Modelling of the Actual Structure of Cellular Materials Determined by X-Ray Tomography. Acta Mater. 2005, 53, 719–730. [Google Scholar] [CrossRef]
- Jones, A.C.; Arns, C.H.; Sheppard, A.P.; Hutmacher, D.W.; Milthorpe, B.K.; Knackstedt, M.A. Assessment of Bone Ingrowth into Porous Biomaterials Using MICRO-CT. Biomaterials 2007, 28, 2491–2504. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Soil Pore Characteristics Assessed from X-Ray Micro-CT Derived Images and Correlations to Soil Friability. Geoderma 2012, 181, 22–29. [Google Scholar] [CrossRef]
- Zhang, L.; Ferreira, J.M.; Olhero, S.; Courtois, L.; Zhang, T.; Maire, E.; Rauhe, J.C. Modeling the Mechanical Properties of Optimally Processed Cordierite–Mullite–Alumina Ceramic Foams by X-Ray Computed Tomography and Finite Element Analysis. Acta Mater. 2012, 60, 4235–4246. [Google Scholar] [CrossRef]
- EN ISO 845; Cellular Plastics and Rubbers-Determination of Apparent Density. European Standardization Committee: Brussels, Belgium, 2009.
- Gómez-Fernández, S.; Ugarte, L.; Calvo-Correas, T.; Peña-Rodríguez, C.; Corcuera, M.A.; Eceiza, A. Properties of Flexible Polyurethane Foams Containing Isocyanate Functionalized Kraft Lignin. Ind. Crops Prod. 2017, 100, 51–64. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Kairytė, A. Coir Fibers Treated with Henna as a Potential Reinforcing Filler in the Synthesis of Polyurethane Composites. Materials 2021, 14, 1128. [Google Scholar] [CrossRef] [PubMed]
- Czech-Polak, J.; Oliwa, R.; Oleksy, M.; Budzik, G. Sztywne Pianki Poliuretanowe o Zwiększonej Odporności Na Płomień. Polimery 2018, 63, 115–124. [Google Scholar] [CrossRef]
- Członka, S.; Kairytė, A.; Miedzińska, K.; Strąkowska, A.; Adamus-Włodarczyk, A. Mechanically Strong Polyurethane Composites Reinforced with Montmorillonite-Modified Sage Filler (Salvia officinalis L.). Int. J. Mol. Sci. 2021, 22, 3744. [Google Scholar] [CrossRef] [PubMed]
- Członka, S.; Kairytė, A.; Miedzińska, K.; Strąkowska, A. Polyurethane Composites Reinforced with Walnut Shell Filler Treated with Perlite, Montmorillonite and Halloysite. Int. J. Mol. Sci. 2021, 22, 7304. [Google Scholar] [CrossRef] [PubMed]
Variant | Particle Size [mm] |
---|---|
0 | no WP added |
1 | 0.05–<0.125 |
2 | 0.125–<0.315 |
3 | 0.315–1.25 |
4 | >1.25–2.0 |
Variant | Density [kg/m3] |
---|---|
0 | 21.6 ± 0.5 |
1 | 27.1 ± 1.3 |
2 | 30.1 ± 0.8 |
3 | 29.1 ± 0.1 |
4 | 33.7 ± 1.0 |
Parameter | Filler fraction | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
Cream time (s) | 4.0 ± 0.0 | 3.0 ± 0,0 | 2.3 ± 0.6 | 3.3 ± 0.6 | 3.3 ± 0.6 |
Growth start (s) | 41.7 ± 2.1 | 38.0 ± 1.7 | 23.7 ± 3.1 | 26.3 ± 2.9 | 30.7 ± 2.1 |
Gel time (s) | 103.3 ± 2.5 | 172.7 ± 4.6 | 142.7 ± 8.1 | 129.0 ± 9.5 | 125.7 ± 6.7 |
Time of growth (s) | 140.7 ± 7.5 | 243.0 ± 7.0 | 180.0 ± 0.0 | 173.7 ± 3.1 | 170.5 ± 7.8 |
Tack-free time (s) | 165.3 ±10.1 | 268.7 ± 5.7 | 256.0 ± 13.5 | 190.0 ± 10.6 | 194.3 ± 9.5 |
Temperature of foaming (°C) | 105.5 ± 0.7 | 93.0 ± 4.2 | 105.5 ± 4.9 | 99.0 ± 5.7 | 90.5 ± 0.75 |
Growth (mm) | 150.0 ± 6.0 | 150 ± 5.0 | 150 ± 2.0 | 145.0 ± 4.0 | 134.0 ± 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirski, R.; Walkiewicz, J.; Dukarska, D.; Derkowski, A. Morphological Features of PUR-Wood Particle Composite Foams. Materials 2022, 15, 6741. https://doi.org/10.3390/ma15196741
Mirski R, Walkiewicz J, Dukarska D, Derkowski A. Morphological Features of PUR-Wood Particle Composite Foams. Materials. 2022; 15(19):6741. https://doi.org/10.3390/ma15196741
Chicago/Turabian StyleMirski, Radosław, Joanna Walkiewicz, Dorota Dukarska, and Adam Derkowski. 2022. "Morphological Features of PUR-Wood Particle Composite Foams" Materials 15, no. 19: 6741. https://doi.org/10.3390/ma15196741
APA StyleMirski, R., Walkiewicz, J., Dukarska, D., & Derkowski, A. (2022). Morphological Features of PUR-Wood Particle Composite Foams. Materials, 15(19), 6741. https://doi.org/10.3390/ma15196741