The Effect of Pr Doping Contents on the Structural, Microstructure and Dielectric Properties of BaBi2Nb2O9 Aurivillius Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bochenek, D.; Niemiec, P.; Szafraniak-Wiza, I.; Dercz, G. Comparison of electrophysical properties of PZT-type ceramics obtained by conventional and mechanochemical methods. Materials 2019, 12, 3301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossetti, G.A. Structure and bonding in PbZrO3–PbTiO3 (PZT) alloys. Br. Ceram. Trans. 2004, 103, 83–87. [Google Scholar] [CrossRef]
- Bochenek, D. Magnetic and ferroelectric properties of PbFe1/2Nb1/2O3 synthesized by a solution precipitation method. J. Alloys Compd. 2010, 504, 508–513. [Google Scholar] [CrossRef]
- Bochenek, D.; Surowiak, Z. Influence of admixtures on the properties of biferroic Pb(Fe0.5Nb0.5)O3 ceramics. Phys. Status Solidi A 2009, 206, 2857–2865. [Google Scholar] [CrossRef]
- Adamczyk-Habrajska, M. Synteza i Badania Właściwości Ceramiki BaBi2Nb2O9; Wydawnictwo Gnome: Katowice, Poland, 2012. [Google Scholar]
- Aurivillius, B. Mixed oxides with layer lattices: III. Structure of BaBi4Ti4O15. Ark. For. 1950, 3, 519. [Google Scholar]
- Millan, P.; Castro, A.; Torrance, J.B. The first doping of lead2+ into the bismuth oxide layers of the Aurivillius oxides. Mater. Res. Bull. 1993, 28, 117–122. [Google Scholar] [CrossRef]
- Gaikwad, S.P.; Samuel, V.; Pasricha, R.; Ravi, V. Preparation of nanocrystalline ferroelectric BaBi2Nb2O9 by citrate gel method. Mater. Lett. 2004, 58, 3729–3731. [Google Scholar] [CrossRef]
- Karthik, C.; Varma, K.B.R. Dielectric and pyroelectric anisotropy in melt-quenched BaBi2(Nb1−xVx)2O9 ceramics. Mater. Res. Bull. 2008, 43, 3026–3036. [Google Scholar] [CrossRef]
- Kannan, B.R.; Venkataraman, B.H. Effect of rare earth ion doping on the structural, microstructural and diffused phase transition characteristics of BaBi2Nb2O9 relaxor ferroelectrics. Ceram. Int. 2014, 40, 16365–16369. [Google Scholar] [CrossRef]
- Rentschler, T. Substitution of lead into the bismuth oxide layers of the n = 2- and n = 3-aurtvillius phases. Mater. Res. Bull. 1997, 32, 351. [Google Scholar] [CrossRef]
- Kendall, K.; Thomas, J.K.; Loye, H.C. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem. Mater. 1995, 7, 50–57. [Google Scholar] [CrossRef]
- Sun, P.; Wang, H.; Bu, X.; Chen, Z.; Du, J.; Li, L.; Wen, F.; Bai, W.; Zheng, P.; Wu, W.; et al. Enhanced energy storage performance in bismuth layer-structured BaBi2Me2O9 (Me = Nb and Ta) relaxor ferroelectric ceramics. Ceram. Int. 2020, 46, 15907–15914. [Google Scholar] [CrossRef]
- Afqir, M.; Tachafine, A.; Fasquelle, D.; Elaatmani, M. Preparation and dielectric properties of BaBi1.8Ln0.2Nb2O9 (Ln = Ce, Gd) ceramics. Mater. Sci. Pol. 2018, 36, 46–50. [Google Scholar] [CrossRef]
- Nishimoto, S.; Matsuda, M.; Harjo, S.; Hoshikawa, A.; Kamiyama, T.; Ishigaki, T.; Miyake, M. Structure determination of n = 1 Ruddlesden-Popper compound HLaTiO4 by powder neutron diffraction. J. Eur. Ceram. Soc. 2006, 26, 725–729. [Google Scholar] [CrossRef]
- Aurivillius, B. Mixed bismuth oxides with layer lattices: I. The structure type of CaNb2Bi2O9. Ark. For. Kemi 1949, 1, 463–480. [Google Scholar]
- Aurivillius, B. Mixed bismuth oxides with layer lattices: II. Structure of Bi4Ti3O12. Ark. For. Kemi 1949, 2, 499–512. [Google Scholar]
- Adamczyk, M.; Kozielski, L.; Pilch, M. Impedance Spectroscopy of BaBi2Nb2O9 Ceramics. Ferroelectrics 2011, 417, 1–8. [Google Scholar] [CrossRef]
- Campos, A.L.; Mazon, T.; Varela, J.A.; Zaghete, M.A. Preparation and Characterization of BaBi2Nb2O9 (BBN) Ceramics Synthetized by Polymeric Precursors Method. Key Eng. Mater. 2001, 189, 149–154. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line profiles of neutron powder diffraction peaks for structure refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Adamczyk, M.; Kozielski, L.; Zachariasz, R.; Pawełczyk, M.; Szymczak, L. Structural, dielectric spectroscopy and intenal friction correlation in BaBi2NbO9 ceramics. Arch. Metall. Mater. 2014, 59, 1. [Google Scholar] [CrossRef] [Green Version]
- Ismunadar, B.I. Kennedy, Effect of temperature on cation disorder in AB2Nb2O9 (A = Sr, Ba). J. Mater. Chem. 1999, 9, 541. [Google Scholar]
- Mirinda, C.; Costa, M.E.V.; Avdeev, M.; Kholkin, A.L.; Baptista, J.L. Relaxor properties of Ba-baser layered perovskites. J. Eur. Ceram. Soc. 2001, 21, 1303–1306. [Google Scholar] [CrossRef]
- Ramaraghavulu, R.; Buddhudu, S. Structural and dielectric properties of BaBi2Nb2O9 ceramics. AIP Conf. Proc. 2014, 1591, 1702. [Google Scholar]
- Przedmojski, J. Rentgenowskie Metody Badawcze w Inżynierii Materiałowej; Wydawnictwo Naukowo Techniczne: Warszawa, Poland, 1990. [Google Scholar]
- Trzebiatowski, W.; Łukaszewicz, K. Zarys Rentgenograficznej Analizy Strukturalnej; Wydawnictwo Górniczo—Hutnicze: Katowice, Poland, 1960. [Google Scholar]
- Wang, G.; Zhang, H.; Huang, X.; Xu, F.; Gan, G.; Yang, Y.; Wen, D.; Li, J.; Liu, C.; Jin, L. Correlations between the structural characteristics and enhanced microwave dielectric properties of V–modified Li3Mg2NbO6 ceramics. Ceram. Int. 2018, 44, 19295–19300. [Google Scholar] [CrossRef]
- Montereo, M.; Millian, P.; Duran-Martin, P.; Jimenez, B.; Castro, A. Solid solutions of lead-doped bismuth layer of Aurivillius n = 2 and n = 3 oxides: Structural and dielectric characterization. Mater. Res. Bull. 1998, 33, 1103–1115. [Google Scholar] [CrossRef]
- Wu, Y.; Nguzen, C.; Seraji, S.; Forbess, M.; Limmer, S.J. Processing and Properties of Strontium Bismuth Vanadate Niobate Ferroelectric Ceramics. J. Am. Ceram. Soc. 2001, 84, 2882. [Google Scholar] [CrossRef]
- Adamczyk, M.; Ujma, Z.; Pawełczyk, M. Dielectric properties of BaBi2Nb2O9 ceramics. J. Mater. Sci. 2006, 41, 5317–5322. [Google Scholar] [CrossRef]
- Subbarao, E. A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 1962, 23, 665–676. [Google Scholar] [CrossRef]
- Uchino, K.; Nomura, S. Critical exponents of the dielectric constants in diffused-phasetransition crystals. Ferroelectr. Lett. Sect. 1982, 44, 55–61. [Google Scholar] [CrossRef]
- Szalbot, D.; Adamczyk, M.; Wodecka-Duś, B.; Rerak, M.; Feliksik, K. Influence of calcium doping on microstructure, dielectric and electric properties of BaBi2Nb2O9 ceramics. Process. Appl. Ceram. 2018, 12, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Adak, M.K.; Mukherjee, A.; Chowdhury, A.; Ghorai, U.K.; Dhak, D. Structure-property correlation of Ba1-xCuxBi2(Nb1-xTax)2O9 ferroelectric nano ceramics prepared by chemical route. J. Alloys Compd. 2018, 740, 203–211. [Google Scholar] [CrossRef]
- Karthik, C.; Varma, K.B.R. Influence of vanadium doping on the processing temperature and dielectric properties of barium bismuth niobate ceramics. Mater. Sci. Eng. B 2006, 129, 245–250. [Google Scholar] [CrossRef]
- Cheng, Z.Y.; Katiyar, R.S. Dielectric behavior of lead magnesium niobate relaxors. Phys. Rev. B 1997, 55, 8165. [Google Scholar] [CrossRef]
- Tan, Q.; Viehland, D. ac-field-dependent structure-property relationships in La-modified lead zirconate titanate: Induced relaxor behavior and domain breakdown in soft ferroelectrics. Phys. Rev. B 1996, 53, 14103. [Google Scholar] [CrossRef]
- Taganstev, A.K. Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. Phys. Rev. Lett. 1994, 72, 1100. [Google Scholar] [CrossRef]
- Pirc, R.; Blinc, R. Vogel-Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 2007, 76, 020101. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk-Habrajska, M.; Goryczka, T.; Szalbot, D.; Rerak, M.; Bochenek, D. Influence of lanthanum dopant on the structure and electric properties of BaBi2Nb2O9 ceramics. Arch. Metall. Mater. 2020, 65, 207–214. [Google Scholar]
Mole Fraction | a [Å] | b [Å] | c [Å] | V [Å3] | R-Factor [%] |
---|---|---|---|---|---|
x = 0.00 | 3.9406 | 3.9406 | 25.6378 | 398.1 | Rp = 6.06 Rwp = 8.73 Rexp = 4.80 |
x = 0.02 | 3.9285 | 3.9285 | 25.6054 | 395.2 | Rp = 6.48 Rwp = 8.16 Rexp = 4.16 |
x = 0.04 | 3.9317 | 3.9317 | 25.6118 | 395.9 | Rp = 6.69 Rwp = 8.92 Rexp = 4.02 |
x = 0.06 | 3.9293 | 3.9293 | 25.5999 | 395.2 | Rp = 6.49 Rwp = 8.22 Rexp = 4.01 |
x = 0.08 | 3.9278 | 3.9278 | 25.604 | 395.3 | Rp = 6.15 Rwp = 8.29 Rexp = 4.22 |
x = 0.10 | 3.9316 | 3.9316 | 25.604 | 395.8 | Rp = 6.73 Rwp = 8.16 Rexp = 4.27 |
A Mole Fraction | Density ρ [g/cm3] | +/− (Δρ) [g/cm3] | ρ/ρtheoretical [%] |
---|---|---|---|
0.00 | 7.071 | 0.001 | 97 |
0.02 | 6590 | 0.011 | 93 |
0.04 | 6.866 | 0.001 | 97 |
0.06 | 6.929 | 0.004 | 98 |
0.08 | 6.706 | 0.004 | 95 |
0.10 | 6.758 | 0.002 | 96 |
x | Theoretical Content [%] | Content of EDS [%] | Error (σ2) [%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BaO | Bi2O3 | Nb2O5 | Pr2O3 | BaO | Bi2O3 | Nb2O5 | Pr2O3 | BaO | Bi2O3 | Nb2O5 | Pr2O3 | |
0.02 | 0.02 | 21.8 | 52.6 | 30 | 0.02 | 20.6 | 51 | 27.9 | 1.2 | 1.6 | 2.1 | 0.02 |
0.04 | 0.04 | 21.4 | 52.6 | 30 | 0.04 | 19.3 | 51.1 | 29 | 2.1 | 1.5 | 1 | 0.04 |
0.06 | 0.06 | 20.9 | 52.6 | 30 | 0.06 | 18.8 | 50.6 | 29.8 | 2.1 | 2 | 0.2 | 0.06 |
0.08 | 0.08 | 20.5 | 52.6 | 30 | 0.08 | 19.5 | 51.4 | 27.7 | 1 | 1.2 | 2.3 | 0.08 |
0.10 | 0.1 | 20 | 52.6 | 30 | 0.1 | 18.7 | 50 | 29.4 | 1.3 | 2.6 | 0.6 | 0.1 |
Mole Fraction | Parameter γ |
---|---|
0.00 [31] | 1.45 |
0.02 | 1.95 |
0.04 | 1.73 |
0.06 | 1.73 |
0.08 | 1.75 |
0.10 | 1.64 |
Mole Fraction | ΔTm | Δεmax |
---|---|---|
0.00 [31] | 92.59 | 68 |
0.02 | 80.84 | 61.7 |
0.04 | 79.64 | 56.3 |
0.06 | 73.84 | 72.35 |
0.08 | 98.68 | 78.13 |
0.10 | 102 | 112.1 |
A Mole Fraction | Tm [K] 100 [kHz] | εmax 100 [kHz] | Ea [eV] | Tf [K] | fo [Hz] |
---|---|---|---|---|---|
0.00 [31] | 456 | 406 | 0.46 | 170 | 9.68·1012 |
0.02 | 465 | 366 | 0.29 | 267 | 3.87·1011 |
0.04 | 456 | 381 | 0.26 | 240 | 7.12·1011 |
0.06 | 447 | 409 | 0.24 | 266 | 1.96·1011 |
0.08 | 422 | 399 | 0.23 | 246 | 6.71·1011 |
0.10 | 420 | 416 | 0.19 | 216 | 2.56·1010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rerak, M.; Makowska, J.; Osińska, K.; Goryczka, T.; Zawada, A.; Adamczyk-Habrajska, M. The Effect of Pr Doping Contents on the Structural, Microstructure and Dielectric Properties of BaBi2Nb2O9 Aurivillius Ceramics. Materials 2022, 15, 5790. https://doi.org/10.3390/ma15165790
Rerak M, Makowska J, Osińska K, Goryczka T, Zawada A, Adamczyk-Habrajska M. The Effect of Pr Doping Contents on the Structural, Microstructure and Dielectric Properties of BaBi2Nb2O9 Aurivillius Ceramics. Materials. 2022; 15(16):5790. https://doi.org/10.3390/ma15165790
Chicago/Turabian StyleRerak, Michał, Jolanta Makowska, Katarzyna Osińska, Tomasz Goryczka, Anna Zawada, and Małgorzata Adamczyk-Habrajska. 2022. "The Effect of Pr Doping Contents on the Structural, Microstructure and Dielectric Properties of BaBi2Nb2O9 Aurivillius Ceramics" Materials 15, no. 16: 5790. https://doi.org/10.3390/ma15165790
APA StyleRerak, M., Makowska, J., Osińska, K., Goryczka, T., Zawada, A., & Adamczyk-Habrajska, M. (2022). The Effect of Pr Doping Contents on the Structural, Microstructure and Dielectric Properties of BaBi2Nb2O9 Aurivillius Ceramics. Materials, 15(16), 5790. https://doi.org/10.3390/ma15165790